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Abstract
The paper contains a brief account of the physics of superfluid 4He, with em-
phasis on the underlying physical principles; it uses the minimum of mathe-
matics, and there is some emphasis on aspects that relate to practical applica-
tions.

1. INTRODUCTION AND HISTORY

Helium was first liquefied by Kammerlingh Onnes in Leiden in 1908. During the late 1920s and early
1930s it was noticed that the liquid had some strange properties, but it was not until 1938 that it was
discovered independently by Allen and Misener and by Kapitza that it exhibited frictionless flow and
was what we now call a superfluid. Shortly afterwards Fritz London suggested that superfluidity could
have some connection with Bose-Einstein condensation, which was known as a theoretical possibility in
an ideal Bose gas. London also realized that there might be a strong connection with superconductivity,
which had been discovered many years before and which could be seen as superfluidity in the electron
gas in a metal. With impressive intuition he also suggested that both superfluidity and superconductivity
were “quantum mechanisms on a macroscopic scale”, although the significance of this idea did not
become really clear until the late 1950s or early 1960s.

Shortly after London produced these seminal ideas he and Tisza suggested that the superfluid phase
of the liquid could be described by a two-fluid model, the condensed and non-condensed atoms being
identified respectively with the superfluid and normal components. In 1941 Landau wrote a remarkable
paper in which he suggested that superfluidity can be understood in terms of the special nature of the
thermally excited states of the liquid: the well-known phonons and rotons. This idea led Landau also to
the idea of a two-fluid model, but with a microscopic interpretation that was different from that of London
and Tisza. Indeed, Landau expressed the view that superfluidity has no obvious connection with Bose
condensation, although, as we shall see, this view was certainly wrong. Nevertheless, the basic ideas in
Landau’s paper were correct, and his interpretation of the two-fluid model showed brilliant intuition.

After the second world war the two-fluid model was placed on a firm experimental basis, espe-
cially with the experiment of Andronikashvili and the discovery of second sound. At the same time the
properties of the normal fluid (the gas of phonons and rotons) were explored in great theoretical detail
by Khalatnikov, with parallel confirmatory experiments.

A theoretical proof that Bose condensation does occur in a liquid such as superfluid helium was
provided by Onsager and Penrose. Feynman wrote a number of important papers in the 1950s, exploring
how the properties of liquid helium were strongly related to the fact that the atoms obey Bose statistics.
The quantization of superfluid circulation and the existence of free quantized vortices were proposed
theoretically and independently by Onsager and Feynman, and the first experimental confirmation came
from the work of Hall and Vinen with the discovery of mutual friction in rotating helium and with the
direct observation in a macroscopic experiment of the quantization of circulation. This work led to an
appreciation for the first time of the full significance of London’s “quantum mechanism on a macorscopic
scale”, and of the underlying importance of Bose condensation in superfluidity.

In 1957 Bardeen, Cooper and Schrieffer wrote their famous paper on the theory of supercon-
ductivity. In due course this led to a better appreciation of the connection between superfluidity and
superconductivity, and the discovery of the quantization of flux and of free flux lines in type II supercon-
ductors demonstrated clearly the analogies between the two systems. As far as we know all superfluids



and superconductors have one basic feature in common: their properties derive from the existence within
them of some type of Bose condensation, involving atoms or pairs of atoms or pairs of electrons.

Liquid 3He exhibits no superfluid behaviour at the relatively high temperatures involved in su-
perfluid 4He, thus confirming the importance of particle statistics in this behaviour. The discovery of
superfluidity in liquid 3He by Osheroff, Richardson and Lee in 1973 at a temperature of about 2mK
completed the story, showing that BCS pairing can occur in an uncharged Fermi liquid; the pairs are
now pairs of atoms, but the pairing is unconventional in that it involves relative p-states rather than
the s-states of the conventional BCS theory. Unconventional pairing is now known to occur in exotic
superconductors, such as the heavy-fermion metals and the high-temperature materials.

In these brief notes we shall focus our attention on superfluidity in liquid 4He, emphasizing the
underlying physical principles, including those associated with macroscopic quantum phenomena, and
we shall place some emphasis on aspects that relate to practical applications.

The following references contain useful introductory reading [1], [2], [3].

2. THE PHASE DIAGRAM OF 4He

               Solid

partly schematic
     25

              Liquid        Liquid
                helium II          helium I

    p         λ-line
(atm)

          C
                                                                                             gas

1              2               3                4             5             6
     T (K)

1Fig. 1: The phase diagram of 4He.

We see that the phase diagram in Fig. 1 exhibits two anomalous features. The liquid phase exists
over a range of pressure up to about 25 atm even at the absolute zero of temperature; and there are two
liquid phases, helium I, which is conventional in its properties, and helium II, which is superfluid.

The existence of a liquid over a range of pressures at T = 0 must be a quantum effect. It arises
from quantum mechanical zero point energy: the fact that a confined particle must have kinetic energy,
this energy increasing as the particle is more strongly confined. In the absence of a high pressure, the
atoms cannot become sufficiently closely spaced to allow the formation of an ordered crystal, without
the penalty of too large a zero point energy.

The Third Law of Thermodynamics requires that the entropy of a system in equilibrium should
vanish at T = 0. Therefore the liquid must be in some sense completely ordered at T = 0. This ordering
must be quantum mechanical in origin, as in the ordering of particles among quantum mechanical energy
levels rather than in position. It seems reasonable to suppose that superfluidity is a consequence of this
ordering.



3. THE HEAT CAPACITY

The heat capacity, C , is shown in Fig. 2, for the case when the helium is under its own vapour pressure.
We see that the transition to superfluidity is accompanied by a large peak in the heat capacity. There
is no latent heat, but the heat capacity tends to infinity at the transition, so that the transition cannot
be classified as strictly second-order. The shape of the heat capacity near the transition is like a greek
letter λ: hence the term λ−point to describe the transition. The type of anomaly depicted in Fig. 2 is
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Fig. 2: The heat capacity of liquid 4He.

quite common in nature, and it is characteristic of a system that exhibits an order-disorder transition; an
example is the ferromagnetic transition. We see clear confirmation that superfluidity must be associated
with a (quantum mechanical) ordering in the liquid. A similar anomaly in the heat capacity appears at
the transition temperature of a superconductor, although in this case it has more nearly the character of a
strictly second order transition.

We note that, although the heat capacity becomes rather small at low temperatures, it is quite large
just below the λ−point; for example at 1.8K. This feature can be useful in applications.

4. THE OBSERVED PROPERTIES OF SUPERFLUID 4He: THE TWO-FLUID MODEL

At first sight these properties present a confusing picture, but they make sense in terms of the two-fluid
model, regarded as a purely phenomenological description. We describe the essential features of this
model, and then give examples of properties that can be described in terms of it. The superfluid phase
can be regarded as a mixture of two fluids, which can support different velocity fields. The normal fluid,
with density ρn, flow velocity field vn and conventional viscosity ηn, carries all the thermal energy and
entropy in the system. The superfluid component, with density ρs and flow velocity field vs , can flow
without friction and carries no thermal energy. The densities, ρn and ρs vary with temperature in the way
shown in Fig. 3.

A pressure gradient will tend to drive both fluids in the same direction. An increase in temperature
increases ρn but decreases ρs, so a temperature gradient tends to drive the superfluid component in one
direction (towards to high temperature) and the normal fluid in the opposite direction.
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Fig. 3: The observed dependence of ρn and ρs on temperature.

5. EXAMPLES OF “TWO-FLUID” BEHAVIOUR

The superfluid component can flow without friction through even very narrow channels, so narrow that
the normal fluid is rendered completely immobile by its viscosity. A striking example is provided by
“film flow”. Any solid surface in contact with the liquid is covered by a film of liquid, about 30 nm in
thickness, as a result of van der Waals attraction between the helium atoms and the substrate. This is
true in principle for any liquid, but in helium flow of the superfluid component through the very thin film
becomes possible, with the result illustrated in Fig. 4.

Fig. 4: Film flow

A famous experiment was performed by Andronikashvili. He constructed a pile of discs, which he
suspended in helium by a torsion fibre, as shown in Fig. 5. He measured the period of torsional oscillation
as a function of temperature. The spacing between the discs was such that at the period of oscillation
the normal fluid was completely coupled to the disc system. However, the superfluid component was not
coupled, so that only the normal fluid contributed to the moment of inertia of the disc system. These
measurements provided the first evidence for the dependence of normal fluid density on temperature
shown in Fig. 3.



Fig. 5: The Andronikashvili experiment

Heat transport in superfluid helium takes place by counterflow of the two fluids, the superfluid
component moving towards the source of heat and the normal fluid away from it, as shown in Fig. 6.
Only the normal fluid carries thermal energy, at a rate per unit area, Q = ρSTvn, where S is the entropy
of the helium per unit mass. This leads to very effective thermal transport, at a rate limited only by
the small viscosity of the normal fluid. In practice the thermal transport is not quite as effective as is
suggested by this idea, as will be explained later.

Fig. 6: Illustrating thermal transport by counterfow

The existence of two fluids allows two modes of longitudinal wave propagation. The two fluids
can oscillate in phase, giving rise to first sound; or thay can oscillate in antiphase, giving rise to second
sound. First sound is an isentropic pressure or density wave, analogous to ordinary sound in a fluid; it
propagates at a speed of c1 = (∂p/∂ρ)

1/2

S ≈ 240 ms−1. Second sound involves to a good approximation
no change in density, but only a change in the proportions of the two fluids; it is therefore a temperature
wave, but one that obeys the wave equation rather than the diffusion equation. The speed of second
sound is given by c2

2
= TS2ρs/Cρn, and its value is roughly 20 ms−1 over the temperature range from

1K to 2K. Transient thermal effects in superfluid helium can therefore be very different from those in a
conventional fluid, and discussion of them must allow for the existence of second sound.

The examples of two-fluid behaviour that we have described apply in their simplest form only if
the flow velocities do not exceed certain critical values, which are often quite small (∼few mm s−1). We
shall discuss the reason later, after we have explained the theoretical basis of the two-fluid model.

The two-fluid model applies also to superconductors. The resistive loss that occurs in a rapidly
oscillating electric field is due to motion of the normal fluid.



6. WHY IS HELIUM DESCRIBED BY A TWO-FLUID MODEL?

Part of the answer to this question was given by Landau in his famous 1941 paper. In effect he focussed
his attention on the nature of the normal fluid. He considered the form of the thermally excited states in
the liquid at a low temperature. He argued with great insight (but less rigour) that they would consist of
quantized sound waves, which are called phonons, and elementary forms of rotational motion called by
him rotons. His ideas were placed on a firmer theoretical basis by Feynman, who was able to be more
precise about the nature of a roton, which he showed to be in essence a free atom moving through the
liquid, with a backflow formed from motion of the other atoms. Suppose that we set all these excita-
tions into motion with a drift velocity v, leaving the fluid otherwise at rest. Given the properties of the
excitations (in particular their energy-momentum relationship, which can now be determined experimen-
tally by neutron scattering) Landau calculated the momentum density, Je, associated with the drifting
excitations. He found that

Je = ρev < ρv, (1)

where the inequality holds at sufficiently low temperatures, which turn out to be temperatures below the
λ−point. Thus the drifting excitations do not cause the whole fluid to drift, in the sense that they carry
an effective density that is less than the total density of the helium.

We identify the gas of excitations with the normal fluid. Then ρe = ρn can be calculated, and it
can be shown to be equal to the observed normal-fluid density.

The superfluid component in Landau’s picture is what is left over after the thermal excitations have
been taken into account. Landau also considered what would happen if this background were to move.
He showed that it could not slow up by creating or scattering excitations if its velocity were less that a
critical value, which is about 60 ms−1. This picture of the superfluid component is not wholly satisfying,
and it is certainly not the whole story, not least because observed critical velocities are typically very
much less than 60 ms−1. We shall now examine the nature of the superfluid component in more detail,
and we shall demonstrate its connection with Bose condensation.

7. THE NATURE OF THE SUPERFLUID COMPONENT

To understand the real nature of the superfluid component we must start by looking at the phenomenon of
Bose-Einstein condensation. Bose condensation plays a crucial role in superfluidity, contrary to Landau’s
original opinion.

Consider an ideal gas formed from Bose particles: i.e. particles such as 4He atoms that are
quantum-mechanically indistinguishable, but are not subject to the exclusion principle (i.e. there can
be any number of particles in one quantum state). If we calculate the way in which the particles of the
gas are distributed over the quantum states determined by the shape and size of the containing vessel,
we find an interesting result: below a critical temperature, T0, a finite fraction of the particles are “con-
densed” into the lowest quantum state. The way in which this fraction varies with temperature is shown
in Fig. 7(a), and the calculated heat capacity is shown in Fig. 7(b). The heat capacity reflects the ordering
of the particles into a single quantum state below the temperature T0. Very recently, such Bose conden-
sation has been observed directly in weakly-interacting gases formed from alkali-metal atoms levitated
magnetically and trapped in a vacuum, the gas being cooled below the temperature T0 (typically in the
range 0.1-1 µK) by a combination of laser and evaporative cooling [4].

For an ideal hypothetical gas of non-interacting helium atoms with the same density as liquid
helium the condensation temperature T0 ∼ 3K. An obvious question is whether a similar type of ordering
occurs in real liquid helium, albeit modified in some way by the strong interactions between the helium
atoms.

The answer is that it does, as shown first by Penrose and Onsager. The fraction of condensed
particles is smaller than in the ideal gas; even at T = 0 it is only about 10 percent. But it remains the
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Fig. 7: The predicted behaviour of an ideal Bose gas. (a) The temperature dependence of the condensed fraction of particles;

(b) the predicted heat capacity.

case that a macroscopic fraction, and a very large absolute number, of the atoms does condense into
what is effectively a single quantum state, and it turns out that at T = 0 the non-condensed atoms are
effectively locked to the condensed atoms.

We now understand that this is indeed the ordering process taking place below the λ−point, and
that ultimately it is this ordering that is responsible for superfluidity. It is a remarkable process, because it
is closely analogous to the formation of a coherent electromagnetic wave in a laser, which can be viewed
as a condensation of photons into a single quantum state. In helium there is a coherent matter wave. A
similar process occurs in a superconductor, except that the coherent wave is formed from Cooper pairs.
A coherent matter wave lies at the heart of both superfluidity and superconductivity.

The assembly of condensed atoms is called the condensate, and the associated wavefunction is
called the condensate wave function (CWF). If the condensed atoms are at rest the CWF is just a constant
Ψ0, where Ψ2

0
is a measure of the number of condensed atoms. If they are moving, each with momentum

m4v along the x-axis, the CWF becomes

Ψ = Ψ0 exp

(

im4vx

~

)

. (2)

For a more general motion of the condensate we can write

Ψ = Ψ0 exp (iS(r)), (3)

where the local velocity of the condensed atoms is equal to (~/m4)∇S. We identify this velocity with
the velocity of the superfluid component

vs =

(

~

m4

)

∇S. (4)

We can ask how this view of superfluidity relates to that proposed by Landau, which was very
successful in accounting for two-fluid behaviour. We now know that the two approaches are intimately
connected, in the sense that the form of the spectrum of the thermal excitations, which underlies Landau’s
calculation showing that ρn/ρ < 1 below the λ−point, is intimately connected with the existence of the
condensate. Without the condensate the spectrum would have the wrong form. Note especially that
we now have a clear view of the meaning of the velocity of the superfluid component, which was not
provided by Landau.



A condensate exists also in a superconductor, formed from the Cooper pairs. The mass m4 is
replaced by 2m, where m is the electron mass.

8. QUANTUM RESTRICTIONS ON SUPERFLUID FLOW

As we shall now demonstrate, the macroscopic occupation of a single quantum state in the Bose-
condensed helium gives rise to macroscopic quantum effects, as London had foreseen.

It follows from Eq. (4) for the superfluid velocity that

curlvs = 0. (5)

This means that there can be no local rotational motion of the superfluid component. This is really a
consequence of the quantization of angular momentum, as we see more clearly in a moment. But there
can be a finite hydrodynamic circulation, defined as

κ =

∮

C
vs · dr, (6)

round any cicuit that cannot shrink to nothing while remaining in the fluid; for example, a circuit round
a solid cylinder passing through the fluid (Fig. 8). However, the circulation cannot take any value. If we
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Fig. 8: Illustrating a circuit round which there can be a finite superfluid circulation.

substitute from Eq. (4) into Eq. (6) we obtain

κ =
~

m4

∮

C
∇S · dr = n

2π~

m4

, (7)

where n must be an integer in order to satisfy the condition that the CWF be single-valued. This means
that the superfluid circulation must be quantized in units of 2π~/m4. This circulation is macroscop-
ically large (it can be measured in a macroscopic mechanical experiment), and this fact provides the
clearest evidence that superfluidity is indeed a “quantum mechanism on a macroscopic scale”. It arises
from the quantization of angular momentum, combined with the fact that all the particles in the conden-
sate must have the same angular momentum. In the absence of any quantized circulation there can be no
local angular momentum, as we have seen in connection with Eq. (5). The quantization of circulation is
has its analogue in superconductivity, where it is observed as the quantization of trapped flux.

9. WHY CAN THE SUPERFLUID FLOW WITHOUT FRICTION?

As we have mentioned, Landau showed that the flowing superfluid component cannot decay into excita-
tions unless the velocity is very large. With the idea of the condensate we can gain greater insight into
this frictionless flow.
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Fig. 9: Persistent superflow round a torus

Suppose that there is a persistent superflow round a torus, as shown in Fig. 9. This flow can be
only metastable, because a state with no flow has a smaller (free) energy. Why is it metastable? The
condensate contains a macroscopic number of atoms. Interaction of these atoms with the walls of the
torus will cause scattering, and some atoms may as a result be knocked out of the condensate. This
will reduce the amplitude of the CWF, but it will not alter its coherent phase. Therefore the superfluid
velocity does not change, although the superfluid density may decay a little, which would correspond to
the creation of more normal fluid in the form of excitations. Putting it in another way, we can say that
the destruction of superflow would require a transition that takes a macroscopic number of atoms from
one state to another simultaneously, and such a process has very low probability.

But superflow can decay through a mechanism that we have not yet considered: the creation of
free vortex lines, to which we now turn our attention.

10. QUANTIZED VORTEX LINES IN SUPERFLUID HELIUM

We have seen that a quantized superfluid circulation can exist round a solid cylinder running through the
helium. A free quantized vortex line in the superfluid component is a quantum of circulation round a tiny
cylindrical hole in the helium. Such a line always has one quantum of circulation, and the hole then has
a natural size, determined by a balance between the kinetic energy of flow and the surface energy of the
hole, that is less than an interatomic spacing.

Such vortex lines can exist in superfluid helium, and, as we shall show, they play an important role
in its behaviour. Most obviously, perhaps, they allow the superfluid component to rotate if the helium is
placed in a rotating vessel; otherwise such rotation would be forbidden by Eq. (5). A parallel array of

Fig. 10: Vortex lines in the uniformly rotating superfluid component.

lines, as shown in Fig. 10, gives rise to a flow field that mimics uniform rotation on length scales larger



than the line spacing, which is about 0.2 mm at Ω = 1 s−1. This array is analogous to the array of flux
lines in the mixed state of a type II superconductor.

Vortex lines scatter the excitations that constitute the normal fluid, and therefore they give rise to
a frictional force between the two fluids, called mutual friction. This is observed as an attenuation of
second sound when it propagates in the uniformly rotating helium. The observation of this attenuation
provided the first experimental evidence for the existence of vortex lines.
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Fig. 11: Decay of a persistent current by vortex motion.

Vortex lines provide a new mechanism by which a persistent superflow can decay (Fig. 11). Con-
sider again a persistent superflow in a torus. Let the persistent current consist of n quanta of circulation.
If a free vortex, with the appropriate sign, crosses the channel, this value of n falls to n − 1. Does
this mean that the current simply decays? It does not, because the movement of the free vortex across
the channel is opposed by a potential barrier. This barrier arises because a vortex is attracted to a solid
boundary by its image. The barrier is quite large in cases of practical interest, and it can be overcome
only at high velocities (>∼1-10 ms−1), either thermally or by quantum tunnelling. Without this barrier
there would be no superflow. The barrier exists only because a vortex has a finite quantized circulation,
so it is quantum in origin. The barrier exists also in a superconductor, where it is usually called the
Bean-Livingston barrier.

In practice frictionless superflow usually breaks down at velocities much less than 1 ms−1. This is
due to a few remnant vortices, which can expand and multiply, and then cross the channel (cf remnant
dislocations in a solid allowing the solid to deform much more easily than might have been expected).
Remnant vortices seem always to be created when the helium is cooled through the λ−point.

Fig. 12: A turbulent tangle of vortex lines.

This expansion and multiplication leads to a type of turbulence in the superfluid component: a
kind of tangle of vortex lines (Fig. 12). Superfluid turbulence is very common. It seems always to be



generated when the flow velocity exceeds a critical value that depends on channel size and is often as
small as 1 mm s−1.

11. PRACTICAL CONSEQUENCES OF SUPERFLUID TURBULENCE

Superfluid turbulence plays an important role in limiting heat transport in superfluid helium by coun-
terflow. The counterflowing fluids cause remnant vortices to multiply (through the action of mutual
friction), and this leads to a self-sustaining regime of homogeneous turbulence. The vortices thus gen-
erated lead to a steady average force of mutual friction per unit volume between the two fluids, given
by

Fsn = Aρsρn|vs − vn|
3, (8)

which limits the heat transport rate, Q per unit area, in a way that is generally much more important
than normal-fluid viscosity. The parameter A is about 800 m s kg−1 at 1.8K. Q becomes a non- linear
function of the temperature gradient, which is given by

∇T =
Aρn

ρ3
sS

4T 3
Q3, (9)

where S is again the entropy per unit mass of the helium. Although mutual friction becomes the dominant
dissipative process limiting the heat flow, the effective thermal conductivity remains generally very high.

Superfluid helium can be forced to flow down a tube or past an obstacle, just as can any conven-
tional fluid. Except at very small velocities or in very narrow channels both the superfluid component
and the normal component become turbulent. It turns out that this turbulence is surprisingly similar to
that in a conventional fluid at high Reynolds number. The reasons are complicated, but they seem to
be connected with two facts: on a scale large compared with the spacing between the vortex lines even
the superfluid component looks like a classical fluid flowing at high Reynolds number; and the mutual
friction associated with the vortex lines serves to lock the two velocity fields together. Thus the flow
of the superfluid phase of liquid helium at high velocities in situations having a classical analogue is
described quite well by classical formulae describing the flow of a conventional fluid, with density equal
to the total helium density and viscosity similar to that of the normal fluid (for a recent extensive review
of quantum turbulence see reference [5]).

12. THE KAPITZA THERMAL BOUNDARY RESISTANCE

As we have seen the effective thermal conductivity of superfluid helium is very high, but often it is
necessary to transfer heat out of a solid body into the helium, or vice versa. We must then take account
of a high thermal boundary resistance between the solid and the helium (the Kapitza resistance). This
resistance arises from the fact that it is generally difficult for a thermal excitation in the solid to convert
to one in the helium. This can be seen most easily when both the excitations are quantized sound waves
or phonons. When a sound wave approaches a change of medium, some is transmitted and some is
reflected, the relative amounts being determined by the characteristic impedances (Z = ρc) of the two
media. For liquid helium Z has a value that is much smaller than for any solid, and the resulting serious
acoustic mismatch at the boundary leads to the high thermal boundary resistance. Its value is typically
of order 2 × 10−4 K W−1 m2.

13. SUMMARY AND CONCLUSIONS

The superfluid phase of liquid 4He behaves in strange ways, which can be summarized as follows. It
shows “two-fluid” behaviour; a normal fluid coexisting with a superfluid component. The superfluid
component can exhibit frictionless flow at low velocities and in narrow channels. Rotational motion in



the superfluid component is severely restricted by quantum effects, associated with the quantization of
circulation (essentially the quantization of angular momentum). This unconventional behaviour has its
origin in quantum effects and especially in the formation of a coherent matter field within the liquid,
associated with the phenomenon of Bose-Einstein condensation. At high flow velocities ideal superfluid
behaviour, involving frictionless flow, breaks down through the generation of a form of quantum turbu-
lence, which leads to a frictional interaction between the superfluid and normal components. Quantum
turbulence is likely to be important in many situations of practical importance.
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