
CHAPTER 15 

Probability and Statistics 

1. INTRODUCTION 

The theory of probability has many applications in the physical sciences. It is of 
basic importance in quantum mechanics where results may be expressed in terms 
of probabilities (see Chapter 13, Schrödinger equation). It is needed whenever we 
are dealing with large numbers of particles or variables where it is impossible or 
impractical to have complete information about each one. such as in kinetic theory 
and statistical mechanics and a great variety of engineering problems. Statistics is 
the part of probability theory which deals with the interpretation of sets of data. 
You need statistical terms and methods every time you make a set of laboratory 
measurements. In this chapter. we shall discuss some of the basic ideas of probability 
and statistics which are most useful in applications. 

The word 'probably" is frequently used in everyday life. We say "The test 
will probably be hard," "II will probably snow today," 'We will probably win this 
game. and so on. Such statements always imply a state of partial ignorance about 
the outcome of some event: we (10 not say "probably" about something whose 
outcome we know. The theory of probability tries to express more precisely just 
what our state of ignorance is. We say that the probability of getting a head in 
one toss of a coin is 1. and similarly for a tail. We mean by this that there are two 
possible outcomes of the experiment (if we do not consider the possibility of the 
coin's standing on edge) and that we have no reason to expect one outcome more 
than the other: therefore we assign equal probabilities to the two possible outcomes. 
(See end of Section 2 for further discussion of this.) 

Consider the following problem. You and I each toss a coin and look at our 
own coins but not each other's. The question is "What is the probability that 
both coins show heads?" Suppose you see that your coin shows tails: you say that 
the probability that both coins are heads is zero because you know that yours is 
tails. On the other hand, suppose T see that my coin is heads; then I say that the 
probability of both he-ads is 1 because I don't know whether your coin shows heads 
or tails. Now suppose neither of us looks at either coin, but a third person looks 
at both coins and gives us the information that at least one is heads. Without this 
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information, there are four possibilities, namely 

(1.1) 	 hh 	tt 	th 	ht 

to each of which we would ordinarily assign the probability 1  (see end of Section 2. 
and Section 3). The information "at least one head" rules out tt, but gives no new 
information about the other three cases. Since hh, th, ht were equally likely before. 
we still consider them equally likely and say that the probability of hh is 

Notice in the above discussion that the answer to a probability problem depends 
on the state of knowledge (or ignorance) of the person giving the answer. Notice 
also that in order to find the probability of an event, we consider all the different 
equally likely outcomes which are possible according to our information. We say 
that these are mutually exclusive (for example, if a coin is heads it cannot be tails). 
collectively exhaustive (we must consider all possibilities), and equally likely (we 
have no information which makes us expect one result more than another so we 
assume the same probability for each one of the set of outcomes). Let us now 
formalise this notion of probability as a definition (also see Section 2). 

If there are several equally likely, mutually exclusive, and collec-
tively exhaustive outcomes of an experiment, the probability of an 
event Eis 

(1.2) 
- number of outcomes favorable to E 

- 	total number of outcomes 

pie 1. Find the probability that a single card drawn from a shuffled deck of cards 
will be either a diamond or a king (or both). 

There are 52 different possible outcomes of the drawing; since the deck is shuffled, 
we assume all cards equally likely. Of the 52 cards, 16 are favorable (13 diamonds 
and the 3 other kings); therefore by (1.2) the desired probability is 	= 52 	13* 

)Is 2. A three-digit number (that is, a number from 100-999) is selected "at ran-
dom." ("At random" means that we assume all numbers to have the same proba-
bility of being selected.) What is the probability that all three digits are the same? 

There are 900 three-digit numbers; 9 of them (namely 111, 222, ••, 999) have 
all three digits the same. Hence the desired probability is 	=1001 

ROBLEMS, SECTION 1 

1. If you select a three-digit number at random, what is the probability that the units 
digit is 7? What is the probability that the hundreds digit is 7? 

2. Three coins are tossed what is the probability that two axe heads and one tails? 
That the first two are heads and the third tails? If at least two are heads, what is 
the probability that all are heads? 

3. In a box there are 2 white, 3 black, and 4 red balls. If a ball is drawn at random, 
what is the probability that it is black? That it is not red? 
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4. A single card is drawn at random from a shuffled deck. What is the probability that 
it is red? That it is the ace of hearts? That it is either a three or a five? That it n. 
either an ace or red or both? 

5. Given a family of two children (assume boys and girls equally likely, that is, proba-
bility 1/2 for each), what is the probability that both are boys? That at least one 
is a girl? Given that at least one is a girl, what is the probability that both are 
girls? Given that the first two are girls, what is the probability that an expected 
third child will be a boy? 

6. A trick deck of cards is printed with the hearts and diamonds black, and the spades 
and clubs red. A card is chosen at random from this deck (after it is shuffled). Finc 
the probability that it is either a red card or the queen of hearts. That it is either 
a red face card or a club. That it is either a red ace or a diamond. 

7. A letter is selected at random from the alphabet. What is the probability that. it 
one of the letters in the word "probability?" What is the probability that it occurs 
in the first half of the alphabet? What is the probability that it is a letter after .r? 

8. An integer N is chosen at random with 1 < N < 100. What is the probability that 
N is divisible by 1]? That N > 90? That N <3? That. N is a perfect. square? 

9. You are trying to find instrument A in a laboratory. Unfortunately. someone ha 
put both instruments A and another kind (which we shall call B) away in identicai 
unmarked boxes mixed at random on a shelf. You know that the laboratory ha 
3 A's and 7 B's. If you take down one box, what is the probability that you get 
an A? If it is a B and you put it on the table and take down another box, what 
the probability that you get an A this time? 

10. A shopping mall has four entrances, one on the North, one on the South, and tw. 
on the East. If you enter at random, shop and then exit at random, what is th 
probability that you enter and exit on the same side of the mall? 

2. SAMPLE SPACE 

It is frequently convenient to make a list of the possible outcomes of an experimen: 
[as we did in (1.1)]. Such a set of all possible mutually exclusive outcomes is called a 
sample space; each individual outcome is called a point of the sample space. Ther' 	' 
are many different sample spaces for any given problem. For example. instead i..: 
(1.1), we could say that a set of all mutually exclusive outcomes of two tosses of 
coin is 

(2.1) 	 2 heads, 	1 head, 	no heads. 

Still another sample space for the same problem is 

(2.2) 
	

no heads, 	at least 1 head. 

(Can you list some more examples?) On the other hand, the set of outcomes 

2 heads, 	at least 1 head, 	exactly I tail. 

cannot be used as a sample space, because these outcomes are not mutually exclu-
sive. "At least 1 head" includes "2 heads" and also includes "exactly 1 tail" (which 
means also "exactly 1 head"). 
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the probability 	 • In order to ie a sample space to solve problems, we need to have the probabil- 
ities corresponding to the different points in the sample space. We usually assign 
probability 1/4 to each of the outcomes listed in (1.1). (See end of Section 2 and See 

	

I â$y. that. is, prt. 	 tion 3.) We call such a list of equally likely outcomes a unifonn sample space. Now 
mqq That at least one. I 

	

Y that both 	
suppose the outcomes are not equally likely. Satisfy yourself that the probabilities 
associated with the points of (2.1) and (2.2) are as follows. 
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siiuffled). Fl, 	 The sample spaces (2.1) and (12) with different probabilities associated with dif- 
r 	It is eit 	 ferent points are called nonuniform sample spaces. For some problems, there may 

be both uniform and nonuniform sample spaces: for example, (1.1) is a uniform 

	

*ability that j 	 sample space. and (2.1) and (2.2) are nonuniform sample spaces for a toss of two 
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we cannot use the definition (1.2) of probability, and we need the following more 
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40~ away in jd-1 	 Definition of Probability. Given any sample space (uniform or not) and the 

	

-' 	 probabilities associated with the points, we find the probability of an event by 

	

that 	 adding the probabilities associated with all the sample points favorable to the 

	

QmmivT bc. what 	 event. 

For a giveil nonuniform sample space, we must use this definition since (1.2) 
does not apply. If the given sample space is uniform, or if there is an underlying 
uniform sample space [for example, (1.1) is the uniform space underlying (2.1) and 
(2.2)], then this definition is consistent with the definition (1.2) by equally likely 
cases (Problems 15 and 16), and we may use either definition. As an example, let 
us find from (2.1) the probability of at least one head; this is the probability of one 
head plus the probability of two heads or + 1 = . We get the same result from 
the uniform sample space (1.1) using either (1.2) or the definition above. 

If we can easily construct several sample spaces for a given problem, we must 
choose an appropriate one for the question we want to answer. Suppose we ask the 
question: In two tosses of a coin, what. is the probability that both are heads? From 
either (1.1) or (2.1) we find the answer ; (2.2) is not an appropriate sample space 
to use in answering this question. (Why not?) To find the probability of both tails, 
we could use any of the three listed sample spaces. and to find the probability that 
the first toss gave a head and the second a tail. we could use only (1.1) since the 
other sample spaces do not give enough information. Let us now consider some less 
trivial examples. 

A coin is tossed three times. A uniform sample space for this problem contains 

and we attach probability 1 to each. 
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What is the probability of at least two tails in succession? By actual count, we 	 . points for sum 4 
see that there are three such cases, so the probability is 

What is the probability that two consecutive coins fall the same? Again by Sample 
actual count, this is true in six cases so the probability is & or 	 (2.5) 

If we know that there was at least one tail, what is the probability of all tails? 	 probab 
The point hhh is now ruled out; we have a new sample space consisting of seven  
points. Since the new information (at least one tail) tells us nothing new about 	

(d ) What is the 
answer this from th these seven outcomes, we consider them equally probable each with probability I.  

Thus the probability of all tails when all heads is ruled out is I 	 j t at the sum has 
(e) What is the 

(See problems 11 and 12 for further discussion of this example.) 	 to 9? Using (2.5) 
and 12. Thus the dt 

Example 2. 	Let two dice be thrown: the first die can show any number from I to 6 and  
similarly for the second (lie. Then there are 36 possible outcomes or points in a s0 far we have bA 
uniform sample space for this problem: with each point we associate the probability that heads and tails 

We can indicate a 3 on the first die and a 2 on the second die by the symbol 
36 

about this,  you we,  
3,2. Then the sample space is as shown in (2.4). (Ignore the circling of some points true, as a bent or 
and the letters a and b right now: they are for use in the problems below.) the mathematical th 

the physical world. 

1,1 	1,2 	1.3.,.-"1,4> 	1,5 	1,6 a set of assumptions 
results follow. The h 

2,1 	2.2 	2,3 	2,4 	2.5 	2,6 Ic probabilities 8c. 

3,1 	3,2 	3,3 	3,4 	3.5 	3,6 tossing problem. 	e 
probability of tails ar 

(2.4) 
a 	4,1 	4,2 	4,3 	4,4 	4,5 	4.6 	b in two tosses i 	. 	s 

correct is not a mat.n 
5,1 	5,2 	5,3 	5,4 	5.5 	5.6 are trying to solve, 

6,1 	6.2 	6,3 	6,4 	6.5 	6,6 
can somehow estimat* 
tails), then the mat hex 
absence of aiiv informs 

Let us now ask some questions and use the sample space (2.4) to answer them. the "natural" or "Irutui 

(a) What is the probability that the sum of the numbers on the dice will be 5' Possible answer to the 
If the results predirt The sample space points circled and marked a in (2.4) give all the cases for which 
then the assumptions the sum is 5. There are four of these sample points: therefore the probability that 
Section 4, Example 

the sum is 5 is $ or . 
In this chapter we ________ ' 	' r 

(b) What is the probability that the sum on the dice is divisible by 	? This , 
1ating the probabilities  

means a sum of 5 or 10; the four points circled and marked a in (2.4) correspond to associated with the  1 	i 
a sum of 5, and the three points circled and marked b correspond to a stun of 10 me 	probabilities to h 
Thus there are seven points in the sample space corresponding to a suni divisible however, 
by 5, so the probability of a sum divisible by 5 is 	(7 favorable cases out. of 3t in, et(..)  h 	an 
possible cases. or 7 times the probability 	of each of the favorable sample points) 

36 

(c) Set up a sample space in which the points correspond to the possible sums 01 
SE CTION   2 

the two numbers on the dice, and find the probabilities associated with the points 
of this nonuniform sample space. The possible sums range from 2 (that is. I + 1 1 lo io. 	set up an 

to 12 (that is, 6 + 6). From (2.4) we see that the points corresponding to any giv*1I to solve the prohle 

sum lie on a diagonal (parallel to the diagonal elements marked a or h). There i ii. 	Set up several rkonu  
one point corresponding to the sum 2; there are two points giving the sum 3. thre 	______ (Example 1, above 
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a? By actual count. 	 points for sum 4, etc. Thus we have: 

I the same? Again 1 	 Sample Space 2 3 4 5 6 7 8 9 10 11 12 
or 	 (2.5) 	Associated 	2 	 ..j. i 

Øobability of all t 	 probabilities 36 36 36 36 36 36 36 36 36 36 36 

c Consisting of se 	 - _____________ 	(d) What is the most probable sum in a toss of two dice Although we can 
us nothing new ab 	 this 	. answer tins from the sample space (2.4) ('Iv it!), it is easier from (2.5). We see 

ach with probability 	 6 	i that the sum has the largest probability, namely 36 6 
(e) What is the probability that the sum on the dice is greater than or equal 

ample.) 	 to 9? Using (2.5), we add the probabilities associated with the sums 9, 10, 11, 
and 12. Thus the desired probability is 

4 	3 	2 	1 	10 	5 
umber front ito 6 and 1, T6 

+ 
3 
 + 

3 
 + 

36 = 36 = 18 
utcomes or points in a So far we have been talking as if it were perfectly obvious and unquestionable 
s&c1ate the probability that heads and tails are equally likely in the toss of a coin. If you have felt skeptical 
ond die by the sxnbo2 about this, you are perfectly right. 	It is not obvious; it is not even necessarily 
circling of some points true, as a bent or weighted coin would show. We must distinguish here between 

ublems below.) the mathematical theory of probability and its application to a problem about 
the physical world. Mathematical probability (like all of mathematics) starts with 
a set of assumptions and shows that if the assumptions are true, then various 
results follow. The basic assumptions in a mathematical probability problem are 
the probabilities associated with the points of the sample space. Thus in a coin 
tossing problem, we assume that for each toss the probability of heads and the 
probability of tails are both 	. and then we show that the probability of both heads 

o in two tosses is 1. (See Section 3,) The question of whether the assumptions are 
correct is not a mathematical one. Here we must ask what physical problem we 
are trying to solve. 	If we are dealing with a weighted coin, and if we know or 
can somehow estimate experimentally the probability p of heads (and so 1 - p of 
tails), then the mathematical theory starts with these values instead of 	. 	. In the 
absence of any information as to whether heads or tails is more likely, we often make 

.3 	to answer them. the 	natural" or "intuitive" assumption that the probabilities are both 	. The only 

on the dice will be possible answer to the question of whether this is correct or not lies in experiment. 

all the cases for which If the results predicted on the basis of our assumptions agree with experiment, 

4-e the probability that then the assumptions are good; otherwise we must revise the assumptions. (See 
Section 4, Example 5.) 

• divisible  	• r'p 	. 	-  ). 	.. 	This 
- 	In this chapter we shall consider mainly the mathematical methods of calcu- 

•, 
i in (2.4) correspond to 

lating  the probabilities of complicated happenings if we are given the probabilities 
S 

pond to a sum of 10. 
with associated with the points of the sample space. For simplicity, we shall often assume 

. 	. 	. 
nag to a sum divisible 

these probabilities to be the 'natural 	ones; the mathematical theory we develop 

A)rable cases out of 36 
in the co 	toss applies, 	 1 	1 	 rn es, however, f we replace these 	natural 	probabilities (, 

• 
irable sample points). 

. problem. etc.) by any set of non-negative fractions whose sum is i. 

to the possible sums of ROBLEMS, SECTION 2 
iated with the points 

from 2 (that is, 1 + 1) 1 to 10. 	Set up an appropriate sample space for each of Problems 1.1 to 1.10 and use it 
poiiding to any given 	. to solve the problem. Use either a uniform or nonuniform sample space or try both. 

irked a or b). There is 11. 	Set up several nonuniform sample spaces for the problem of three tosses of a coin 
iving the sum 3. three (Example 1, above). 
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12. Use the sample space of Example I above, or one or more of your sample spaces 17. 	Two dice are 
Problem ii, to answer the following questions. even, and the as 

(a) 	If there were more heads than tails, what is the probability of one tail? answer the foUe 

(b) 	If two heads did not appear in succession, what is the probability of all tails? (a) 	What are 

(c) 	If the coins did not all fall alike, what is the probability that two in succession (b) What is tb 
were alike? (c) What is th 

(d) If N 	number of tails and Nh = number of heads, what is the probability . 18, 	Are the foilow - that IJVa - It = I? so, find the prol 
(e) If there was at least one head, what is the probability of exactly two heads? Suggestion: 

13. A student claims in Problem 1.5 that if one child is a girl. the probability that 
the points of the 

both are girls is 1. 	Use appropriate sample spaces to show what is wrong with (a) First die st 
the following argument: It doesn't matter whether the girl is the older child or thr  First die 
younger; in either case the probability is 1 that the other child is a girl. (b) Suni of two  

14. Two dice are thrown. Use the sample space (2.4) to answer the following questions. First die is 
First di 	is 

(a) 	What is the probability of being able to form a two-digit number greater than 
33 with the two numbers on the dice? (Note that the sample point 1, 4 yields (c) 	First die sh 

the two-digit number 41 which is greater than 33, etc.) At least ons 

(b) 	Repeat. part. (a) for the probability of being able to form a two-digit number 19. 	Consider the set 

greater than or equal to 42. tion at random. i 

(c) 	Can you find a two-digit  number (or numbers) such that the probability of 
In the first poiti 

being able to form a larger number is the same as the probability of being able 
questions for the  

to form a smaller number? [See note, part (a).] 
PROBABILflYTHEORE 

15. 
- Use both the sample space (2.4) and the sample space (2.o) to answer the following 

questions about a toss of two dice. It is not always ea.' 

(a) 	What is the probability that. the sum is > 4? Definition (1.2) ashes 
set of all possible equa  

(h) 	What is the probability that the sum is even? then determine how w 
(c) 	What is the probability that. the sum is divisible by 3? Section 2 similarly req 

(d) 	If the sum is odd, what is the probability that it is equal to 7? 	 . and their probabilitift  

(e) 	What is the probability that the product of the numbers on the two dice is 12? some theorems which 
Suppose there are 

16. Given an nonuniform sample space and the probabilities associated with the points. "at random" (this mea 
we defined the probability of an event A as the sum of the probabilities associated drawn 	and then  Wit 
with the sample points favorable to A. You used this definition in Problem 15 with 

for the probability th 
the sample space (2.5).] Show that this definition is consistent with the definition probability of drawing by equally likely cases if there is also a uniform sample space for the problem (us 

The probability of the  there was in Problem 15). Hint: Let the uniform sample space have N points each 
with the probability N-1. Let the nonuniform sample space have ti. < N points. -, 	) of them are black. V 

the first point corresponding to N1  points of the uniform space, the second to N2 white ball and then (wi 
points. etc. What is in the following way, i 

N1  + N2 + . . . + Na? numbered 1 to 15. Th 

What are pit p2, 	the probabilities associated with the first, second, etc.. points and ball 3•  the second 
of the nonuniform space? What is pi. + p +''' + pr,? Now consider an event for a drawing of two ba1 
which several points, say i, j, k. of the nonuniform sample space are favorable. Then  14 for the second (the .1 
using the nonuniform sample space. we have, by definition of the probability p of representing all possh3 
the event, p = p, + p2 +pk. Write this in terms of the N's and show that the result 3.3) with 15 columns ( 
is the same as that obtained by equally likely cases using the uniform space. Refer 	. (for tIme 14 choices for 
to Problem 15 as a specific example if you need to. sampie space. 	[See al 
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.* of your sample spacss 17. 	Two dice are thrown. 	Given the information that the number on the first die is 
even, and the number on the second is <4, set up an appropriate sample space and 

A-bility of one tail? 	A answer the following questions. 

the probability of all tat (a) What are the possible sums and their probabilities? 

t-,-  that two in (b) What is the most probable sum? 

(c) What is the probability that the sum is even? 
Is. what is the prohabi 18. 	Are the following correct nonuniform sample spaces for a throw of two dice? 	If 

so, find the probabilities of the given sample points. If not show what is wrong. 
ty of exactly two head Suggestion: Copy sample space (2.4) and circle on it the regions corresponding to 

girl, the probability t the points of the proposed nonuniform spaces. 

show what is wrong w (a) First die shows an even number. 
is the older child or First die shows an odd number. 

child is a girl. (b) Sum of two numbers on dice is even. 
er the following questio First die is oven and second odd. 

digit number greater t 
First die is odd and second even. 

* sainpk point 1, 4 vielthL (c) First die shows a number < 3. 

T
At least one die shows a number > 3. 

form a two-digit number 19. 	Consider the set of all permutations of the numbers 1, 2, 3. If you select a permuta- 
tion at random, what is the probability that the number 2 is in the middle position? 

h that the probability of In the first position? Do your answers suggest a simple way of answering the same 

probability of being able 
questions for the set of all permutations of the numbers 1 to 7? 

PROBABILITY THEOREMS 
to answer the following  

It is not always easy to make direct use of our definitions to calculate probabilities. 
Definition (1.2) asks us to find a uniform sample space for a problem, that is, a 
set of all possible equally likely, mutually exclusive outcomes of an experiment, and 
then determine how many of these are favorable to a given event. The definition in 
Section 2 similarly requires a sample space. that is, a list of the possible outcomes 

ual to 7" and their probabilities. Such lists may be prohibitively long: we want to consider 

N oil the two dice is 12' some theorems which will shorten our work. 
Suppose there are 5 black balls arid 10 white balls in a box; we draw one ball 

ciated with the point,,. ., 	. 	 . 	 . 	. at random 	(this means we are assuming that each ball has probability - of being 15 probabilities  associated ' 
drawn), and then without replacing the first ball, we draw another. 	Let us ask 

.tmon in Problem 15 with 	- for the probability that the first ball is white and the second one is black. 	The 
tent with the definition- 

*ace for the problem probability of drawing a white ball the first time is 	(10 of the 15 balls are white). 

ce have N points each The probability of then drawing a black ball is 	since there are 14 balls left and 14 

We have n < N points. 5 of them are black. We are going to show that the probability of drawing first a 
paee. the second to white ball and then (without replacement) a black is the product f- -. We reason14  

in the following way, using a uniform sample space. 	Imagine that the balls are 
numbered 1 to 15. The symbol 5,3 will mean that ball 5 was drawn the first time 

rst, second, etc., points  and ball 3 the second time. In such pairs of two (different) numbers representing 
w consider an event, for a drawing of two balls in succession, there are 15 choices for the first number and 
ace are favorable. Then 14 for the second (the first ball was not replaced). Thus the uniform sample space 
of the probability p of representing all possible drawings consists of a rectangular array of symbols (like 

rd show that the result 	. 5,3) with 15 columns (for the 15 different choices for the first number) and 14 rows 
le uniform space. Refer  (for the 14 choices for the second number). Thus there are 15' 14 points in the 

sample space. 	[See also (4.1)]. 	How many of these sample points correspond to 
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drawing first a white ball and then a black ball? Ten numbers correspond to white 

balls and the other five to black balls. Thus to obtain a sample point corresponding 
to drawing first a white and then a black ball, we can choose the first number in 
10 ways and then the second number in 5 ways, and so choose the sample point in 
10 . 5 ways: that is. there are 10. 5 sample points favorable to the desired drawing. 
Then by the definition (1.2). the desired probability is (10 5)1(15  14) as claimed, 

Let us state in general the theorem we have just illustrated. We are interested 
in two successive events A and B. Let P(A) be the probability that A will happen. 
P(AB) be the probability that both A and B will happen. and P.4(B) he the 
probability that B will happen if know that A has happened. Then 

(3.1) 	 P(AB)=P(A)'PA(B) 

or in words, the probability of the compound event. "A and B" is the product of 
the probability that A will happen times the probability that B will happen if .4 
does. Using the idea of a uniform sample space. we can prove (3.1) by following 
the method in the ball drawing problem. Let N be the total number of sample 
points in a uniform sample space, N(A) and N(B) be the numbers of sample points 
corresponding to the events A and B respectively, and N(AB) be the number 
of sample points corresponding to the compound event A and B. It is useful to 

picture the sample space geometrically (Figure 3.1) as an array of N points [compare 
with sample space (2.4)]. We can then circle all points which correspond to A 
happening and mark this region A. it contains N(4) points. Similarly, we can circlt 
the N(B) points which correspond to B's happening and call this region B. Tli 
overlapping region we call AB; it is part of  
both A and B and contains N(AB) points 
which correspond to the compound event 
A and B. Then by the definition (1.2): 

	
A 	: A; : 	: 

N(AB) 	
. . P(AB)= N 

	 . . 

P(A)= 4 . 	 . I  • I  • • 

N(AB) 
PA (B) = N(A) 	 Figure 3.1 

Perhaps this last formula for PA (B) needs some discussion. Recall from Sec-
tion 2. Example 1, the uniform sample space (2.3) for three tosses of a coin. T 
find the probability of all tails given that there was at least one tail, we reduce(. 
our sample space to seven points (eliminating hhh). We then assumed that tlic 
seven points of the new sample space had the same relative probability as befor 
the deletion of the point hhh; thus each of the seven points had probability 
(This is no more and no less 'obvious" than the original assumption that the eigh' 
points had equal probability; it is an additional assumption which we make in th 
absence of any information to the contrary: see end of Section 2.) Now let us b 
at the third equation of (3.2). N(A) is the number of sample points correspondin - 
to event A; the N points in the original sample apace all had the same probahilii 

so we now assume t 
happening, the rema 
new uniform sample 
correspond to the ev 
is N(AB)/N(.4. F 
way we can show th 

(3.3) 

(see Problem 1). 
assumption is not nec 
sample space: see Pr. 

Suppose. now, in 
ball and replace it an 
the second drawing is 
we had not drawn anc 

(3.4) 	 p 

When (3.4) is true. w 
becomes. 

Because of the svmnmet 
if (3.5) is true. (Also s 

Pie 1. (a) In three to 
We found p = for thio  
eight correspond,,, to all 
that the probability of 
therefore 

(b) If we should warm 
the sample space would 
that since the tosses ar 

(c) To find the proba 
corresponds to all the n 
the sum of the probabil 

t1iO 

fr In Figure 3.1 or Figu 
.4 and B. The whole re 
the happening of eftlie'r. 
both A and B occur. W 
both occur. Therm we caz 

(3.2) 
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so we now assume that when we cross off all the points corresponding to A's not 
happening, the remaining N(A) points also have equal probability. Thus we have a 
new uniform sample space consisting of N(A) points. N(AB) of these N(A) points 
correspond to the event B (assuming A). Thus by (1.2), the probability of "B if A" 
is N(AB)/N(A). From the three equations (3.2). we then have (3.1). In a similar 
way we can show that 

(3.3) 	 P(BA) = P(B) PB(A) = P(AB) 

(see Problem 1). [We have proved (3.1) assuming a uniform sample space. This 
assumption is not necessary; (3.1) is true whether or not we can construct a uniform 
sample space; see Problem 2.1 

Suppose, now, in our example of 5 black and 10 white balls in a box, we draw a 
ball and replace it and then draw a second ball. The probability of a black ball on 
the second drawing is then 	= ; this is exactly the same result we would get if 
we had not drawn and replaced the first ball. In the notation of the last paragraph 

(3.4) 	 P(B) = PA (B), 	A and B independent. 

When (3.4) is true, we say that the event B is independent of event A and (3.1) 
becomes 

(3.5) 	P(AB) = P(A) P(B), 	A and B independent. 

Because of the symmetry of (3.5), we may simply say that A and B are independent 
if (3.5) is true. (Also see Problem 7.) 

.3mple 1. (a) In three tosses of a coin, what is the probability that all three are heads? 
We found p = for this problem in Section 2 by seeing that one sample point out of 
eight corresponds to all heads. Now we can do the problem more simply by saying 
that the probability of heads on each toss is . the tosses are independent, and 
therefore 

111 	1 

(h) If we should want the probability of all heads when a coin is tossed ten times, 
the sample space would be unwieldy; instead of using the sample space, we can say 
that since the tosses are independent, the desired probability is p 

(c) To find the probability of at least one tail in ten tosses, we see that this event 
corresponds to all the rest of the sample space except the all heads" point. Since 
the sum of the probabilities of all the sample points is 1, the desired probability is 

(11() 
2 ) 

In Figure 3.1 or Figure 3.2 the region AB corresponds to the happening of both 
.4 and B. The whole region consisting of points in A or B or both corresponds to 
the happening of either A or B or both. We write P(AB) for the probability that 
both .4 sjui B occur. We shall write P(A + B) for the probability that either or 
both ctr Then we can prove that 
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Figure 3.2 	 Figure 3.3 

(3.6) 	 P(A + B) = P(A) + P(B) - P(AB). 

To see why this is true, consider Figure 3.2. To find P(A + B) we add the probabil-
ities of all the sample points in the region consisting of A or B or both. But if we 
add P(A) and P(B), we have included the probabilities of all the sample points in 
AB twice [once in P( A) and once in P(B)]. Thus we must subtract P(AB). which 
is the sum of the probabilities of all the sample points in AB. This is just what 
(3.6) says. 

If the sample space diagram is like the one in Figure 3.3, so that P(AB) = 0. 
we say that A and B are mutually exclusive. Then (3.6) becomes 

(3.7) 	P(A + B) = P(A) + P(B), 	A and B mutually exclusive. 

Example 2. Two students are working separately on the same problem. If the first student 
has probability 1  of solving it and the second student has probability of 	solving 
it, what is the probability that at least one of them solves it? 

Let A be the event "first student succeeds." and B be the event "second student 
succeeds." Then P(AB) = 1  . = A (assume A and B independent since the 
students work separately), Then by (3.6) the probability that one or the other or 
both students solve the problem is 

P(A + B) = + - = 

Conditional Probability; Bayes' Formula If we are asked for the probability 
of event B assuming that event A occurs [that is. PA (B)], it is often useful to find 
it from (3.1): 

i1e3. A preliminary tet  
certain course. The f61 

(a) 95% of the students 

(b) 96% of the students 

(c) 25% of the studento  

What is the probability 
the course? 

Fai 
preIMMOY 

test 

Let A be the event 
The probability we w*z 
P(AB) is the probabilit 
- lie Course; this is PA 
students passed the coo 
also want P(A). the p 
event corresponds to ti 
probabilities of the two  

, failing test." Then 

See Figure 3.4; of the 9 
nary test: of the 	of tb 
test since we are given t. 

Equation (3.8) is called Bayes formula. In any conditional probability problem to 
which the answer is not immediately obvious, you should consider whether you 
can easily find P( A) and P(AB); if so, the conditional probability PA(B)  is given 
by (3.8). 

­tiat is. half of the stud 
;urse. 

Note that in Figure 3 
*est). We are interested 
of the original sample sl 
sample space (shaded at' 
sample space correspond 
which we computed. 
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A93. A preliminary test is customarily given to the students at the beginning of a 
certain course. The following data are accumulated after several years: 

(a) 95% of the students pass the course. 5% fail. 

(b) 96% of the students who pass the course also passed the preliminary test. 

(c) 25% of the students who fail the course passed the preliminary test. 

What is the probability that, a student who has failed the preliminary test will pass 
the course? 

pre 
95% 
pass 

course 

5% fail 

Figure 3.4 

Let A be the event "fails preliminary test" and B be the event "Passes course.' 
The probability we want is then PA(B)  in (3.8), so we need P(AB) and P(A). 
P(AB) is the probability that the student both fails the preliminary test and passes 
the course; this is P(AB) = (0.95)(0.04) = 0.038. (See Figure 3.4; 95% of the 
students passed the course and of these 4% had failed the preliminary test.) We 
also want. P(A), the probability that a students fails the preliminary test; this 
event corresponds to the shaded area in Figure 3.4. Thus P(A) is the sum of the 
probabilities of the two events "passes course after failing test." "fails course after 
failing test." Then 

P(A) = (0.095)(0.04) + (0.05)(0.75) = 0.0755 

(See Figure 3.4; of the 95% of students who passed the course. 4% failed the prelimi-
nary test: of the 5% of the students who failed the course, 75% failed the preliminary 
test since we are given that 25% passed.) By (3.8) we have 

P(AB) - 	
- 0.038 - 509' PA(B) = P(A) - 0.0755  

that is, half of the students who fail the preliminary test succeed in passing the 
course. 

Note that in Figure 3.4, the shaded area corresponds to event A (fails preliminary 
test). We are interested in event B (passes course) given event A. Thus instead 
of the original sample space (whole rectangle in Figure 3.4) we consider a smaller 
sample space (shaded area in Figure 3.4). We then want to know what part of this 
sample space corresponds to event B (passes course). This fraction is P(AB)/P(A) 
which we computed. 
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PROBLEMS, SECTION 3 	 M, 10. (a) 	typeK  
1. 	(a) 	Set up a sample space for the 5 black and 10 white balls in a box discussed letters into* 

above assuming the first ball is not replaced. Suggestions: Number the halls, that each let 
say 1 to 5 for black and 6 to 15 for white, Then the sample points form an correspondg 

array something like (2.4), but the point 33 for example is not allowed. (Why? S in B. c in 
What other points are not allowed?) You might find it helpful to write the () 	What is th* 
numbers for black balls and the numbers for white balls in different colors. Hint: What  

(h) 	Let A be the event "first ball is white" and B he the event 'second ball is (c) 	Let .4 mean 
black." Circle the region of your sample space containing points favorable to that a got 
A and mark this region .4. Similarly, circle and mark region B. Count the - 	 that either 
number of sample points in A and in B; these are N(A) and N(B). The region P(AB) that 
AB is the region inside both A and B; the number of points in this region is 
N(AB). Use the numbers you have found to verify (3.2) and (3.1). Also find 11. 	In paying a bill b 
P(13) and P8(A) and verify (3.3) numerically, address printed or 

(c) 	Use Figure 3.1 and the ideas of part. (b) to prove (3.3) in general, up and is not bl 
envelope. what is i 

2. 	Prove (3.1) for a nonuniform sample space. Hints: Remember that the probability 
of an event is the sum of the probabilities of the sample points favorable to it. Using 12. 	(a) 	A loaded die 
Figure 3.1, let the points in A but not in .4B have probabilities pi. 1),2. ... ,p,,. the What is the 
points in AB have probabilities Pn+i.P'+2''''. Pm±ks and the points in B but not (h) 	What is the 
in AD have probabilities pn+k+1,pn+k+2..'',pn--k+('  Find each of the probabilities tiriit' with a 
in (3.1) in terms of the p's and show that you then have an identity. 

(c) 	If two dice l 
3. 	What is the probability of getting the sequence hhhttt in six tosses of a coin? If you numbers on 

know the first three are heads. what is the probability that the last three are tails'? that both are 
4. 	(a) 	A weighted coin has probability of 	of showing heads and 	of showing tails. ((1) 	How many ti 

Find the probabilities of hh, ht, th and tt in two tosses of the coin. Set up greater than 
the sample space and the associated probabilities. Do the probabilities add to 
1 as they should? What is the probability of at least one head? What is the (e) 	A (lie, loaded 

probability of two heads if you know there was at least one head? number on lb 

(b) 	For the coin in (a), set up the sample space for three tosses, find the associated . 	(a) 	A candy vezi4 
probabilities, and use it to answer the questions 111 Problem 2.12. bar (with or 

5. 	What is the probability that a number n, I <n < 99, is divisible by both 6 and 10'.' your money b 

By either 6 or 10 or both? get. both theca 

6. 	A card is selected from a shuffled deck. What is the probability that it is either a 
get nothing a*
3 i. indicate t-4 

king or a club? That it is both a king and a club? ties: then 	* 
7. 	(a) 	Note that (3.4) assumes P(A) 34 0 since PA(B) is meaningless if P(A) = 0. the points. 

Assuming both P(A).  96 0 and P(B) j4 0, show that if (3.4) is true, then (b) 	Suppose you u 
P(A) = PB(A); that is if B is independent of .4, then .4 is independent of B sample space 
If either P(A) or P(B) is zero, then we use (3.5) to define independence, buy a candy b 

(b) 	When is an event E independent of itself? When is E independent of "not E"? no money hack 

S. 	Show that YOU just get yo 

P(A + B ± C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(.4BC). 	. 14. A basketball player 
are necessary in or* 

Hint: Start with Figure 3.2 and sketch in a region C overlapping some of the point 	. 	-.  
of each of the regions A, B, and AB. 	

-
Use Bayes' formula 
a reduced sample 

9. Two cards are drawn at random from a shuffled deck and laid aside without being 
examined. Then a third card is drawn. Show that the probability that the third 	 (a) In a family of 
card is a spade is 1 just as it was for the first card. Hint: Consider all the (mutuall'. 	 least one is a gi 
exclusive) possibilities (two discarded cards spades, third card spade or not spade. ' 	i 	what is the pr 
etc.). at lea.st Oflf' is  a 
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10. 	(a) Three typed letters and their envelopes are piled on a desk. If someone puts the 

white balls in a box discussed letters into the envelopes at random (one letter in each), what is the probability 
sggestions: Number the balls, thateach letter gets into its own envelope? Call the envelopes A, B. C. and the 

the sample points form an corresponding letters a, b. c, and set up the sample space. Note that 'a in C. 

zample is not allowed. (Why? b in B, c in A" is one point in the sample space. 

it find it helpful to write the (b)  What is the probability that at least one letter gets into its own envelope? 
te balls in different colors. 	4 Hint: What is the probability that no letter gets into its own envelope. 
be the event "second ball is (c)  Let A mean that a got into envelope A, and so on. Find the probability P(A) 
ontaining points favorable 

mark region B. 
a got into A. 	Find P(B) and P(C). 	Find the probability P(A + B) 

Count the that either a or b or both got into their correct envelopes, and the probability 
NI .4 and N(B). The region P(AB) that both got into their correct envelopes. Verify equation (3.6). 
er of points in this region is 

ifv (3.2) and (3.1). Also find 11. 	In paying a bill by mail, you want to put your check and the bill (with a return 
address printed on it) into a window envelope so that the address shows right side 

(3.3) in general, up and is not blocked by the check. If you put check and bill at random into the 
envelope, what is the probability that the address shows correctly?  

i znber that the probability 
Points favorable to it. using 12. 	(a) A loaded die has probabilities 	, 	-, 	. 	, 	, 	, of showing 1, 2, 3, 4, 5. 6. 

bilities pi, P2.- ...p,. the What is the probability of throwing two 3's in succession? 
d the points in B but not (b) What is the probability of throwing a 4 the first time and not a 4 the second 

thd each of the probabilities time with a die loaded as in (a)? 
an identity. 

(ti) If two dice loaded as in (a) are thrown, and we know that the sum of the 
six tosses of a coin? If YOU numbers on the faces is greater than or equal to 10, what is the probability 

bat the last three are tails? that both are 5's? 
ads and 2 of showing tails. (d)  How many times must we throw a die loaded as in (a) to have probability 
teases of the coin. 	Set up 

Do the probabilities add tc' 
greater than 1 of getting an ace? 

t one head! What (e)  A die, loaded as in (a). is thrown twice. 	What is the probability that the 

t one head? number on the die is even the first time > 4 the second time? 

tosses, find the associated 13. 	(a) A candy vending machine is out of order. The probability that you get a candy 
Problem 2.12, bar (with or without return of your money) is 	, the probability that you get 

Ii'. isible by both 6 and Mi' 
your money back (with or without candy) is 	, and the probability that you 
get both the candy and your money back is 	. What is the probability that you 

babilit, 	that it is either a 
get nothing at all? Suggestion: Sketch a geometric diagram similar to Figure 
3.1, indicate regions representing the various possibilities and their probabili- 
ties: then set up a four-point sample space and the associated probabilities of 

meaningless  if P(A) = o the points. 
hat if (3.4) is true, then (b) Suppose you try again to get a candy bar as in part (a). Set up the 16-point 
n .4 is independent 	B sample space corresponding to the possible results of your two attempts to  
eiine independence buy a candy bar, and find the probability that you get two candy bars (and 
independent of "not E no money back); that you get no candy and lose your money both times; that 

you just get your money back both times. 

- 	 14. A basketball player succeeds in making a basket 3 tries out of 4. How many tries P(BC) + P(ABC .  
are necessary in order to have probability > 0.99 of at least one basket? 

ppmng some of the points  
15. Use Bayes' formula (3.8) to repeat these simple problems previously done by using 

laid aside without being 	
a reduced sample space. 

thabilit.v that the third 1 	 (a) In a family of two 	children, what is the probability that both are girls if at 
asider all the (mutually 	 least one is a girl? 

amd spade or not spade.   (b) What is the probability of all heads in three tosses of t coin if you know that 
at least one is a head? 
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16. 	Suppose you have 3 nickels and 4 dimes in your right pocket and 2 nickels and a with two rows corresp  
quarter in your left pocket. You pick a pocket at random and from it select a coin corresponding to the 
at random. 	If it is a nickel, what is the probability that it came from your right fundamental prncipk 
pocket?   - 

17. 	(a) 	There are 3 red and 5 black halls in one box and 6 red and 3 white halls in 
if OflC t ting 

another. If you pick a box at random, and then pick a ball from 	it at random. 
can hf done what is the -probability that it is red? Black? White? That it is either red or 
in that 'ire  w white? (4 
nth 	A u 

(b) Suppose the first ball selected is red and is not replaced before a second ball N 2  ways 
is drawn. What is the probability that the second ball is red also? to perform t. 

(c) If both balls are red, what is the probability that they both came from the  

same box? 
Now consider a set 

18. 	Two cards are drawn at random from a shuffled deck. an arrange (permute 

(a) What is the probability that at least one is a heart'! things Is at a time. and  

(b) If you know that at least one is a heart, what is the probability that both are we think of seating r. 
first chair, that i, we  hearts? 
elected someone for t 

19. 	Suppose it is known that 1% of the population have a certain kind of cancer. It 15 chair. then (ri 	') - 	it 
also known that a test for this kind of cancer is positive in 99% of the people who principle,   there are nin  
have it but is also positive in 2% of the people who do not have it. Whatthe. is 

he tOW of n chairs. Tb 
probability that a person who tests positive has cancer of this type? _______ 

20. 	Some transistors of two different kinds (call them N and P) are stored in two boxes 	_ 4.2) 

You know that there are 6 N's in one box and that 2 N's and 3 P's got mixed in  
the other box, but you don't know which box is which. You select a box and a Next suppose there 
transistor from it at random and find that. it is an N: what is the probability that  ways we can select groxq 
it came from the box with the 6 N's? From the other box? If another transistor is called the number of pel  
picked from the same box as the first, what is the probability that it is also an N? r) or J? 	ArgtxU 

21. 	Two people are taking turns tossing a pair of coins; the first person to toss two alike ir,(ri 	1) ways to im 
wins. What are the probabilities of winning for the first player and for the second uld write (n - 2) as 	n 

player? Hint: Although there are an infinite number of possibilities here (win on r Thus we limive for the 
first turn, second turn, third turn. etc.). the sum of the probabilities is a geometric,  

series which can be summed; see Chapter 1 if necessary. Prn  

22. 	Repeat Problem 21 if the players toss a pair of dice trying to get a double (that is.  nmmiltiplvimmg and div4 
both dice showing the same number). 

23. 	A thick coin has probability 2  of falling heads, 	of falling tails, and 	of standing on 
edge. Show that if it is tossed repeatedly it has probability 1 of eventually standing  3, 	P(n r) 
on edge. 

4. METHODS OF COUNTING  So far we have been t 

Let us digress for a bit to review some ideas and formulas we need in computing n"tead that we ask how n, 

probabilities in more complicated problems. ' people (n >_ r). Here t 

Let us ask how many two-digit numbers have either 5 or 7 for the tens digit and t' COflifltU' mad.-' up cg 

either 3, 4, or 6 for the units digit. The answer becomes obvious if we arrange the  people B. A, C. v. ca 

possible numbers in a rectangle  can select from it people, 
at a time, and denote this 

53 	54 	56 hack to the problem oi 
73 	74 	76 , 	r chairs: we found that 
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with two rows corresponding to the two choices of the tens digit and three columns 
corresponding to the three choices of the units digit. This is an example of the 
fundamental principle of counting: 

If one thing can be done N1  ways, and after that a second thing 
can be done in N2 ways, the two things can be done in succession 
in that order in N1 . N2 ways. This can be extended to doing any 
number of things one after the other, the first N1 ways, the second 
N2 ways, the third N3  ways, etc. Then the total number of ways 
to perform the succession of acts is the product Ni  N2N3• 

Now consider a set of n things lined up in a row; we ask how many ways we 
can arrange (permute) them. This result is called the number of permutations of n 
things it at a time, and is denoted by nP,, or P(n, n) or P7 . To find this number, 
we think of seating n people in a row of ii chairs. We can place anyone in the 
first chair, that is, we have n possible ways of filling the first chair. Once we have 
selected someone for the first chair, there are (n - 1) choices left for the second 
chair, then (n - 2) choices for the third chair, and so on. Thus by the fundamental 
principle, there are n(n - l)(n - 2) 2. 1 = n! ways of arranging the ii people in 
the row of it chairs. The number of permutations of n things n at a time is 

(4.2) 	 P(n, it) =n!. 

Next suppose there are a people but only r <n chairs and we ask how many 
ways we can select groups of r people and scat them in the r chairs. Tile result is 
called the number of permutations of n things r at a time and is denoted by nPr 
or P(n, r) or P,!. Arguing as before, we find that there are n ways to fill the first 
chair. (n - 1) ways to fill the second chair. (n 2) ways for the third [note that we 
could write (n - 2) as (11 - 3 + 1)], etc., and finally (ii - r + 1) ways of filling chair 
r. Thus we have for the number of permutations of n things r at a time 

P(n.r) = n(n - 1)(n —2)... (n - r + 1). 

By multiplying and dividing by (n - r)! we can write this as 

(n—r)!  
(4.3) 	P(r,r)=n(n.1)(n_2)(n_r+l)(flr)! = (n —r)!' 

)ucket and 2 ni 
M and Irorn it s 
it it came from 

red and 4 white I 
k a hail from it at ii 
:e' That it is either 

daced before a second 
a1l is red also? 

thes' both came from 

Probability that both 

-rain kind of cancer. It is 
in 99% of the people who 
not have it. What is the 
this type? 

are stored in two boxe&! 
a and 3 P's got mixed in 

You select a box and a 
at is the probability that 
t? if another transistor is 
itv that it is also an N? 

Person to toss two alike 
iaer arid for the second 

ibihitie here (win on 
obabilities is a geometric 

to get a double (that is, 

ils, and of standing on 
i of eventually standing 

- 	 So fir we have been talking about arranging things in a definite order. Suppose, 

	

W need in computing 	 instead that we ask how many committees of r people can he chosen from a group of 
n people (a > r). Here the order of the people in the committee is not considered; 

	

for the tens digit and 	 the committee made up of people A, B, C. is the same as the comniittee made up 

	

i(Nis if we arrange the 	 of people B. A. C. We call the number of such committees of r people which we 
can select from it people, the number of combinations or selections of a things r 
at a time, and denote this number by nCr or C(n, r) or (). To find C(n, r), we 
go back to the problem of selecting r people from a group of it and seating them 
in r chairs; we found that the number of ways of doing this is P(n, r) as given in 
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(4.3). We can perform this job by first selecting r people from the total n and then This is the desired cxm  
arranging the r people in r chairs. The selection of r people can be done in C(n. rI Generalizing this e 
ways (this is the number we are trying to find), and after r people are selected, they of &' - h 	is C(n. r). * 
can be arranged in r chairs in P(r, r) ways by (4.2). By the fundamental principle expansion (see Chapt 
(4.1), the total number of ways P(n, r) of selecting and seating r people out of ri is binomial coefficients, 
the product C(n, r) . P(r, r). Thus we have 

(4.4) 	 P(ri, r) = C(n. r) . P(r. r). (4.7) 

We can solve this equation to find the value C(n, r) which we wanted. Substituting 
the values of P(n, r) and P(r, r) from (4.3) and (4.2) into (4.4) and solving for  imple3. 	A bask problem 
C(n, r), we find for the number of combinations of n things r at a time  in how many ways caj  

numbers of halls in th 

P(n, r) 	n! 	/ \ box, N:t in the third. 
(fl) 

(4.5) 	 C(n, r) 	
= 

J 	given distribution 
P(r, r) 	(n - r)!r! 	rj r 	mechanics the 'halL 

corresponds to a sniall 

Each time we select r people to be seated, we leave n — r people without chairs. can state many other I Then there are exactly the same number of combinations of n things n — r at a tini For example. in tossn 

as there are combinations of n things r at a time. Hence we write box 2; in tossing a dw 
letters are the balls. a 

(4.6) 	 C(n, n — r) = C(n. r) 	 I 
are the balls and the  

(n 	r)!ri experiment, the alpha 
on the cletectiiig scree  

We can also obtain (4.6) from (4.5) by replacing r by (n — r). Problems 14 and 21 az 
Let us do a special 

Example 1. 	A club consists of 50 members. In how many ways can a president. vice- and the numbers of ha 
president, secretary, and treasurer be chosen? In how many ways can a committee  
of 4 members be chosen? Numb*  

In the selection of officers, we must not only select 4 people. but decide which Oflf In box 

is president, etc.; we could think of seating the 4 people in chairs labeled president. We first ask how man' 
vice-president, etc. Thus the number of ways of selecting the officers is 15 halls: this is C I 

considered; this is like I 

' 	
501 

P(50, 4) = (50 	4) = 	= 50 4948 47. 
f 	left, of which we are 

then select the 4 halls 
The committee members, however, are all equivalent (we are neglecting the pos- 1 	2 halls for box 4 in 07 

sibility that one is named chairman), so the number of ways of selecting committees balls for box 6 in 02 
of 4 people is the total number of wa 

	

C(50,4) 	
- 50•49•48•47  

	

' 	— 46!4! 	24 

Example 2. 	Find the coefficient of x8  in the binomial expansion of (1 +x)"'. 
Think of multiplying out 

(1 +x)(1 +x)(1 +x) 	'(1 +x), 	(with 15 factors). 

S 	time 
 

We obtain a term in 	each time we multiply 1 s from seven of the parentheses by Rememher from ('hap 

x s from eight of the parentheses. The number of ways of selecting 8 parenthese 
iNext we want the 

the halls are (listribete 

R','bO3, 

out of 15 is
15! has the same probahmt 

C(k.8) . We can put the fit 
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oin the total it and then  This is the desired coefficient of x8 . 
le can he done in C(n. r  Generalizing this example. we see that in the expansion of (a+b)tz.  the coefficient 
people are selected. they of (Zr4_rhr  is C(n. r), usually written (',) when used in connection with a binomial 
* fundamental principle expansion (see Chapter 1. Section 13C). Thus the expressions C(n, r) are just the 
ting r people out of n binomial coefficients. and we can write 

(47) 	 (a + b)1' 

= 	(:) a'b'. 

we wanted. Substitutj 
to (4.4) and solving foe, 2 eample 3. 	A basic problem in statistical mechanics is this: Given N balls, and n boxes, 
S r at a time in how many ways can the balls be put into the boxes so that there will be given 

numbers of balls in the boxes, say N1  balls in the first box, N2 balls in the second 
box. N3 in the third, •. N 	in the nth. and what is the probability that this 

1 given distribution will occur when the balls are put into the boxes? In statistical 
mechanics the "balls" may be molecules, electrons, photons, etc., and each "box" 
corresponds to a small range of values of position and momentum of a particle. We 

r people without chairs, can state many other problems in this same language of putting balls into boxes. 

n things it - r at a tin For example, in tossing a coin, we can equate heads with box 1, and tails with 

e write box 2: in tossing a (lie, there are six "boxes. 	In putting letters into envelopes, the 
letters are the balls, and the envelopes are the boxes. In dealing cards, the cards 
are the balls and the players who receive them are the boxes. In an alpha scattering 
experiment, the alpha particles are the balLs, and the boxes are elements of area 
on the detecting screen which the particles hit after they are scattered. (Also see 
Problems 14 and 21 and Feller. pp.  10-11.) 

Let its do a special case of this problem in which we have 15 balls and 6 boxes, 
can a president, vice- :' and the numbers of balls we are to put into the various boxes are: 
ways can a committee 

•1 Number of halls: 	3 	1 	4 	2 	3 	2 

le, but decide which one In box munber: 	1 	2 	3 	4 	5 	6 
hairs labeled president. We first ask how many ways we call select 3 balls to go in the first box from the 
te officers is 15 halls; this is C(15, 3). 	(Note that the order of the balls in the boxes is not 
 1 considered; this is like the committee problem in Example 1.) Now we have 12 balls 

.47. left, of which we are to select 1 for box 2; we can do this in C(12. 1) ways. We can 

4 then select the 3 balls for box 3 from the remaining 11 balls in Q11,4) ways, the 
are neglecting the pc 2 balls for box 4 in C(7, 2) ways. the 3 balls for box 5 in C(5, 3) ways, and finally the 

of selecting conrniitt balls for box 6 in C(2.2) ways (verify that this is 1). By the fundamental principle. 
the total number of ways of putting the required numbers of balls into the boxes is 

C(15, 3) . C(12, 1) . C(11,4) . C(7, 2) - Q5, 3) . C(2,2) 

15! 	12! 	11! 	7! 	5! 	21 
'ff1 	\15 	 'II = 

3!.12! 	1!.11! 	4!.7! 	2!'5! 	3!.2! 	2!.0! 
15! 

factors). 3!1!4!2!3!2r 

iof the parentheses (Remember from Chapters 1 and ii that 01 = 1.) . 
ectmg 8 parentlies 

Next we want tin' probability of this particular distribution. Let us assume that 
the halls are distributed "at random" into the boxes; by this we mean that a ball 
has the same probability (namely 	) of being put into any one box as into any other 

• box. We can put the first ball into any one of the 6 boxes, the second ball into any 
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one of the 6 boxes, and so on. Thus by the fundamental principle, the total number 11P 	5. 	In Exainpi. 4 

of ways of distributing the 15 balls into the 6 boxes is 6 6 6 ' 6 	6 = 615  and we ular boxes were emp 

are assuming that these distributions are equally probable. Then the probability was true because t 

that, when 15 balLs are distributed "at random" into 6 boxes, there will he 3 halls Without the restrictio  

in box 1, 1 in box 2, etc., as given, is, by (1.2) (favorable cases ± total) are not equally prc,bai 
pie. the prohahilit c 

15! 	
6 

of no bails in the flw 

L 3!•1!4!•2!•3!2 	. 4!±6. Weseet  
box) are less probabk 

Example 4. 	In Example 3, we assumed that the 611  possible distributions of 15 balls into Now we are going 

6 boxes were equally likely. This seems very reasonable if we think of putting the rangements are equali 

arid the 4 halls are pe balls into the boxes by tossing a die for each ball; if the die shows 1 we put the bali 
if the people are frwn into box 1 etc. However, we can think of situations to which this method and result 
and the probabilities ,  do not apply. For example, suppose we are putting letters into envelopes or seating 
the concentrated arm  people in chairs; then we may reasonably require only one letter per envelope, not 
model. (This is a mo,  more than one person per chair, that is, one ball (or none) per box. Consider the 
to 6. and 4 balls. Frc. 

problem of seating 4 people in 6 chairs, that is of putting 4 balls into 6 boxes. If we 
ball in the box inini 

number the chairs from 1 to 6 and let each person choose a chair by tossing a die. 
also add another card 

we may have two or more people choosing the same chair. The result 64 (which the 
the number first draw method of Example 3 gives for the problem of 4 balls in 6 boxes) then does not apply 
in the corresponding 

to this problem. However, let us consider the uniform sample space of 64  points and 
8 cards. We repeat 

select from it the points corresponding to our restriction (one ball or none per box 
Then the probability 

The new sample space contains C(6,4) . 4! points (number of ways of selecting the 
of one ball in each of 

4 chairs to be occupied times the number of wa,vs of then arranging 4 people in 4 
probability that the fit chairs). Since these points were equally probable in the original (uniform) sample 
this the probability :h space, we still consider them equally probable. Now let us ask for the probability 

- 	are 4! such possihihte 
that the first two chairs are vacant when the 4 people are seated. The number of 

the distributions "all h sample points corresponding to this event is 4! (the number of ways of arranging 
equally probable. Fur 

the 4 people in the last 4 chairs). Thus the desired probability is 
arrangements are eqi.s 

4! 	1 To find the numbi 

C(6,4).4! = C(6.4Y 	 ture of the ,4 balls in t 

We can now see an easier way of doing problems of this kind. The factor T. 	 Box iiiiniber 
which canceled in the probability calculation was the number of rearrangements of 	 Nitniher of h 
the 4 people among the 4 occupied chairs. Since this is the same for any given set 
of 4 chairs, we can lump together all the sample points corresponding to each given 	 The lines mean the si 

set of 4 chairs, and have a smaller (still uniform) sample space of C(6, 4) points, 	 requires 7 lines to pici 

Each point now corresponds to a given set of 4 occupied chairs the quantity C(6.4 	 ( &i'aflgCl'nentS of the 4 

is just the number of ways of picking 4 occupied chairs out of 6. The probability 	 the beginning and t ti 

that the first two chairs are vacant when 4 people are seated is 1/C(6, 4) since there 	 can be arranged in anv 

is only one way to select 4 occupied chairs leaving the first two chairs vacant. 	 of the balls in the boxes  

Another useful way of looking at this problem is to consider a set of 4 ident.icoi 	 , arrangements is just ti- 

balls to be put into 6 boxes. Since the balls are identical, the 4! arrangements 	 Out of 9 positions for ti 

of the 4 balls in 4 given boxes all look alike. We can say that there are Q6,4, 	 arrangements in this p 

distinguishable arrangements of the 4 identical balls in 6 boxes (one ball or none 	 we see then that 14.  
per box) Since all these arrangements are equally probable the probability of aRv 	 must say how we prop 
one arrangement (say the first two boxes empty) is 1/C(6 1 4) as we found previously 	 hat Practical problem 

pace and the prohabili 
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inciple, the total nurn ample 5. 	In Example 4 we found the same answer for the probability that two partic- 
5 6 (i 	6 = 615 and ular boxes were empty whether or not we considered the balls distinguishable. This 

le. Then the probabjil was true because the allowed distinguishable arrangements were equally probable. 

aces. there will be 3 EiIls Without the restriction of one ball or none per box, all distinguishable arrangements 
eases 	total) are not equally probable according to the methods of Examples 3 and 4. For exam- 

ple, the probability of all balls in box 1 is 1/6; compare this with the probability 
of no halls in the first 2 boxes and one ball in each of the other 4 boxes, which is 
4! - 6 	. We see that the concentrated arrangements (all or several balls in one 

54 

box) are less probable than the more uniform arrangements. 

ributions of 15 balk into Now we are going to try to imagine a situation in which all distinguishable ar- 

we think of putting the rangements are equally probable. Suppose the 6 boxes are benches in a waiting room 

shows 1 we put the b;,U and the 4 balls are people who are going to come in and sit on the benches. Then 

h this method and result if the people are friends, there will be a certain tendency for them to sit together 

into envelopes or seating and the probabilities we have been calculating will not apply—the probabilities of 

letter per envelope, ii the concentrated arrangements will increase. Consider the following mathematical  

) per box. Consider the model. (This is a modification of Pólya's urn model.) We have 6 boxes labeled 1 

balls into 6 boxes. If ., to 6, and 4 balls. From 6 cards labeled 1 to 6 we draw one at random and place a 

a chair by tossing a hall in the box numbered the same as the card drawn. We then replace the card and 

Fhe result 6 	(which rl• also add another card of the same number so that there are now 7 cards, two with 

then does not apply the number first drawn. We now select a card at random from these 7, put a ball 

le space of 64 points and in the corresponding box and again replace the card adding a duplicate to make 

* ball or none per box 8 cards. We repeat this process two more times (until all balls are distributed). 

of ways of selecting the Then the probability that all balls are in box 1 is 	. 	. 	The probability 
*1 

 

rranging4peopleirj4 
i of one ball in each of the first 4 boxes is 	I 	

8 	9 	• 	ere 	is the 

iginal (uniform) sample probability that the first ball is in box 1, the second in box 2, etc.; we must add to 

ask for the probability this the probability that the first ball is in box 3, the second in box 1, etc. there 

seated. The number of are 4! such possibilities all giving one ball in each of the first 4 boxes). We see that 

er of ways of arranging the distributions "all balls in box 1" and "one ball in each of the first 4 boxes" are 

iit 	is equally probable. Further calculation (Problem 20) shows that all distinguishable 
arrangements are equally probable. 

To find the number of distinguishable arrangements, consider the following pic- 
ture of the 4 balls in the 6 boxes. 

is kind. 	The factor 4!. 
0 	 00 	J 	0 

Box number: 	1 	2 	3 	4 	5 	6 
er of rearrangements of Number of balls: 	1 	0 	2 	0 	1 	0 
same for any given set 
sponding to each given The lines mean the sides of the boxes and the circles are the balls; note that it 
pace of C(6.4) points. 	. requires 7 lines to picture the 6 boxes. This picture shows one of many possible 
rs: the quantity C(6, 4) arrangements of the 4 balls in 6 boxes. In any such picture there must he a line at 
of 6. The probability the beginning and at the end, but the rest of the lines (5 of them) and the 4 circles 

is L1C(6. 4) since there can be arranged in any order. You should convince yourself that every arrangement 
wo chairs vacant, of the balls in the boxes can be so pictured. Then the number of such distinguishable 
der a set of 4 identical arrangements is just the number of ways we can select 4 positions for the 4 circles 

the 4! arrangements out of 9 positions for the 5 lines and 4 circles. Thus there are C(9, 4) equally likely 
that there are Q6.4) arrangements in this problem. 
xes (one bail or none We see then that putting halls in boxes is not quite as simple as we thought; we 
the probability of any must say how we propose to distribute them and even before that we must think 

Ls we found previously, what practical problem we are trying to solve; this is what determines the sample 
space and the probabilities to he associated with the sample points. Unfortunately, 
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it may not always be clear what the sample space probabilities should be: then the 
best we can do is to try various assumptions. In statistical mechanics it is found that 
certain particles (for example. the molecules of a gas) are correctly described if we 
assume that they behave like the balls of Example 3 (all 615  arrangements equally 
likely); we then say that they obey Maxwell-Boltzmann statistics. Other particles 
(for example, electrons) behave like the people to be seated in Example 4 (one 
particle or none per box); we say that such particles obey Fermi-Dirac statistics. 
Finally some particles (for example, photons) act something like the friends who 
want to sit near each other (all distinguishable arrangements of identical particles 
are equally likely): we say that these particles obey Bose-Einstein statistics. For 
the problem of 4 particles in 6 boxes, there are then 6 equally likely arrangements 
for Maxwell-Boltzmarm particles. C(6, 4) for Fermi-Dirac particles, and C(9.4) for 
Bose-Einstein particles. (See Problems 15 to 20.) 

PROBLEMS, SECTION 4 

(a) There are 10 chairs in a row and 8 people to be seated. In how niany ways can 
this be done? 

(b) There are 10 questions on a test and you are to do 8 of them. In how many 
ways can you choose them? 

(c) In part (a) what is the probability that the first two chairs in the row are 
vacant? 

(d) In part (h), what is the probability that you omit the first two problems in the 
test? 

(e) Explain why the answer to parts (a) and (b) are different, but the answers to 
(c) and (d) are the same. 

2. In the expansion of (a + h)' (see Example 2), let a = h = 1, and interpret the terms 
of the expansion to show that the total number of combinations of n things taken 
1,2,3,''',nata time, is2"-1. 

3. A bank allows one person to have only one savings account insured to $100,000. 
However, a larger family may have accounts for each individual, and also accounts 
in the names of any 2 people, any 3 and so on. How many accounts are possible for 
a family of 2? Of 3? Of 5? Of a? Hint: See Problem 2. 

4. Five cards are dealt from a shuffled deck. What is the probability that they are all 
of the same suit? That they are all diamond? That they are all face cards? That 
the five cards are a sequence in the same suit (for example. 3. 4, 5, 6, 7 of hearts)? 

5. A bit (meaning binary digit) is 0 or 1. An ordered array of eight bits (such as 
01101001) is a byte. How many different bytes are there? If you select a byte at 
random. what is the probability that you select 11000010? What is the probability 
that you select a byte containing three l's and five 0's? 

6. A scalled 7-way lamp has three 60-watt bulbs which may be turned on one or two 
or all three at a time, and a large bulb which may be turned to 100 watts. 200 watts 
or 300 watts. How many different light intensities can the lamp be set to give if the 
completely off position is not included? (The answer is not 7.) 

Section 4 

S. Two cards are d 
aces? If you k 
aces? If you knc 
are aces? 

9. Two cards are d 
red? If at least u 
is a red ace. who 
what is the prols 

10. What is the prol 
plicity. let a ye 
three different bt 
birthdays is 

p= 

Estimate this for 
for x << 1j. Find 
group of 23 peop4 
the same birthda 
presidents of t 

11. The following Sm 
on each license p 
the same last tu 
must you observe 
with the same lam 

12. Consider Problen 
people for which t; 
same month? 

13. Generalize Exap 
with N1 in box 1. 

I 
14. (a) Find the prei  

That in six t 
a 12-sided di 
faces show ui 

(b) The last prol 
n balls are di 
hail. Show tjL  

15. Set up the uniform 
for Maxwell-Bolt 
particles. See Exan 
6 for BE.) 

Do Problem 15 for 
find the probability 
(You should find ti 

Find the number o 
kinds of statistics. 

18. 

7. What is the probability that the 2 and 3 of clubs are next to each other in a shuffled 
deck? Hint: Imagine the two cards accidentally stuck together and shuffled as 	17. 
one card. 
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Cities should be; then tl 8. Two cards are drawn from a shuffled deck. What is the probability that both are 
mchanies it is found t bat. aces? If you know that at least, one is an ace, what is the probability that both are 
correctly described if ' aces? If you know that one is the ace of spades. what is the probability that both 

6' 	arrangements equa.v are aces? 
tatjstjes. Other partjc 9, Two cards are drawn from a shuffled deck. What is the probability that both are 
Wed in Example 4 red? If at least one is red, what is the probability that both are red? If at least one 
v Fermi-Djrac statistic,,  is a red ace, what is the probability that both are red? If exactly one is a red ace, 
ing like the friends whu___ what is the probability that both are red? 

of identical particle.. _______ 10. What is the probability that you and a friend have different birthdays? (For sun- 
Liritew statistics. 	F plicity, let a year have 365 days.) What is the probability that three people have 

ually likely arrangement- 	J three different birthdays? Show that the probability that ii people have n different 
Particles. and C(9. 4) k birthdays is 

1)  T6 5- 365 
 I Estimate this for n < 365 by calculating In p [recall that In (1 +x) is approximately x 

ad In how many ways Ca:., 	______ for a' 	1]. Find the smallest (integral) n for which p < 	. Hence, show that for a 
group of 23 people or more, the probability is greater than 	that two of them 	have 

of theni. In how iiIan the same birthday. (Try it with a group of friends or a list of people such as the 
presidents of the United States.) 

wt, chairs iii the row 11. The following game was being played on a busy street: Observe the last two digits 
on each license plate. What is the probability of observing at least two cars with 
the same last two digits among the first 5 cars? 10 cars? 15 cars? How many cars 

first two problems in tb. must you observe in order for the probability to be greater than 1  of observing two 
with the same last two digits? 

rent, but the answers 12. Consider Problem 10 for different months of birth. What is the smallest number of 
people for which the probability is greater than 1 that two of them were born in the 

and interpret the ternL- same month? 

ations of ,, things takes. 13. Generalize Example :3 to show that the number of ways of putting N balls in n boxes 
with N1 in box 1, N2 in box 2, etc., is 

ant insured to $100.00() 
idual. and also account.. NO . N21 . N3!.. N! 
accounts are possible for 

14. (a) Find the probability that in two tosses of a coin, one is heads and one tails. 
That in six tosses of a (lie, all six of the faces show up. That in 12 tosses of 

ability that they are all a 12-sided die, all 12 faces show up. That in v tosses of an n.-sided die, all n 
are all face cards? That faces show imp. 

3. 4. 5, 6. 7 of hearts)? 
b) 	The last problem n part (a) s equivalent to finding the probability that, when (b) i 

of eight hits (such as  ,m halls are distributed at random into n boxes, each box contains exactly one 
If you select a byte at ball. Show that for large n, this is approximately ev'. 

What is the probability 15. Set up the uniform sample spaces for the problem of putting 2 particles in 3 boxes: 
for Maxwell-Boltzunann particles, for Fermi-Dirac particles, and for Bose-Einstein 

be turned on one or two particles. See Example 5. (You should find 9 sample points for MB, 3 for FD, and 
to 100 watts, 200 watts 6 for BE.) 
mp he set to give if the 16.   Do Problem 15 for 2 particles in 2 boxes. Using the model discussed in Example 5, 
7.) find the probability of each of the three sample points in the Bose-Einstein case. 

each other in a shuffled (You should find that each has probability 	, that is, they are equally probable.) 

ether  and shuffled as 17.  Find the number of ways of putting 2 particles in 4 boxes according to the three 
kinds of statistics. 
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18. Find the number of ways of putting 3 particles in 5 boxes according to the three some more?) 
kinds of statistics. 

19. (a) 	Following the methods of Examples 3. 4. and 5, show that the number of .r = 
equally likely ways of putting N particles in a boxes, a> N, is n  	for Maxwell- 
Boltzmann particles, C(n, N) for Fermi-Dirac particles, and C(n - 1 + ?, P 

for Bose-Einstein particles.  

(b) 	Show that if n is much larger than N (think , for example. of a = 10e, N = 10). 
then both the Bose-Einstein and the Fermi-Dirac results in part (a) contain For each of these raw  
products of N numbers, each number approximately equal to a. Thus show points in 	.1 	and 
that for ii > N. both the BE and the FD results are approximately equal to 

table niav remiri 
fl N/N! which is 1/N! times the MB result. 

of a function. 	In an  

20. (a) 	In Example 5, a mathematical model is discussed which claims to give a di,-- 
function of t means,;  
In probability the ssz tribution of identical balls into boxes in such a way that all distinguishable 

. 	the sample point we arrangements are equally probable (Bose-Einstein statistics). 	Prove this by 
showing that the probability of a distribution of N balls into a boxes (accord- we are given d ikcr p 
ing to this model) with N1 balls in the first box, N2 in the second, 	, N,, ii. L 	"description 	correep  
the nth, is 1/C(n— 1 +N. N) for any set of numbers N, such that 	N, = N. analytic geometry. Ti. 

on a sample space, 
(b) 	Show that the model in (a) leads to Maxwell-Boltzmann statistics if the drawn 

card is replaced (but no extra card added) and to Fermi-Dirac statistics if the 
drawn card is not replaced. Hint: Calculate in each case the number of possible Probability Functic 

arrangements of the halls in the boxes. First do the problem of 4 particles it. of numbers on dice jk 
6 boxes as in the example, and then do N particles in n boxes (a> N) to gi are several sample p 
the results in Problem 19. Similarly, there are 

convenient to lump to 
21. The following problem arises in quantum mechanics (see Chapter 13, Problem 7.21;. ' 	of x, and consider a 

Find the number of ordered triples of nonnegative integers a, b, c whose stun a + b - of x; this is the samp 
is a given positive integer n. (For example, if n = 2. we could have (a. b, c) = (2,0 1W of the new sample s 
or (0, 2, 0) or (0, 0, 2) or (0, 1, 1) or (1. 0, 1.) or (1. 1, 0).) 	Hint: Show that tho. r 	associated with all tbo  
is the same as the number of distinguishable distributions of n identical balls in .3 particular value of r 
boxes, and follow the method of the diagram in Example 5. - 

f 	we may write p = 
P?Obibüjt/ fnnctzoi fix 

22. Suppose 13 people want to schedule a regular meeting one evening a week. Wha 
line the values of .r az. i probability that there s an evening when everyone s free if each person is the 	 i 
and 1(x) take on om already busy one evening a week? 

'. they will take on a co 

23. Do Problem 22 if one person is busy 3 evenings, one is busy 2 evenings, two are each ' graphically (Figure 5 1 

busy one evening, and the rest are free every evening. 
p'f(x) 

5. RANDOM VARIABLES 

In the problem of tossing two dice (Example 2, Section 2), we may be more interested. k 
in the value of the sum of the numbers on the two dice than we are in the individna 
numbers. Let us call this sum x; then for each point of the sample space in (2.4). . 
has a value. For example, for the point 2. 1, we have x = 2+1 = 3; for the point. 6.2 	. . 
we have x = 8, etc. Such a variable, x, which has a definite value for each sample .  
point, is called a random variable. We can easily construct many more example-. 
of random variables for the sample space (2.4); here are a few (Can you constru' 
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Can you construct 

some more?): 

x = number on first die minus number on second; 

x = number on second die; 

X = probability p associated with the sample point; 

f 1 if the sum is 7 or 11, 
0 otherwise. 

For each of these random variables x, we could set up a table listing all the sample 
points in (2.4) and, next to each sample point, the corresponding value of x. This 
table may remind you of the tables of values we could use in plotting the graph 
of a function. In analytical geometry or in a physics problem, knowing x as a 
function of t means that for any given t we can find the corresponding value of x. 
In probability the sample point corresponds to the independent variable t; given 
the sample point, we can find the corresponding value of the random variable x if 
we are given a description of x (for example. x = the sum of numbers on dice). The 
"description" corresponds to the formula x(t) that we use in plotting a graph in 
analytic geometry. Thus we may say that a random variable x is a function defined 

on a sample space. 

Probability Functions Let us consider further the random variable x = "sum 
of numbers on dice" for a toss of two dice [sample space (2.4)]. We note that there 
are several sample points for which x = 5, namely the points marked a in (2.4). 
Similarly, there are several sample points for most of the other values of x. It is then 
convenient to lump together all the sample points corresponding to a given value 
of x, and consider a new sample space in which each point corresponds to one value 
of x; this is the sample space (2.5). The probability associated with each point 
of the new sample space is obtained as in Section 2, by adding the probabilities 
associated with all the points in the original sample space corresponding to the 
particular value of .r. Each value of x, say x, has a probability pt  of occurrence; 

we may write m = f(x) = probability that x = x1, and call the function f(x) the 

probability function for the random variable x. In (2.5) we have listed on the first 

line the values of x and on the second line the values of 1(x). [In this problem, x 

and f(x) take on only a finite number of discrete values; in some later problems 
they will take on a continuous set of values.] We could also exhibit these values 
graphically (Figure 5.1). 

Figure 5.1 
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Now that we have the table of values (2.5) or the graph (Figure 5.1) to describe divide by N. Inst 
the random variable x and its probability function f(s), we can dispense with the each measurement I 
original sample space (2.4). But since we used (2.4) in defining what is meant by for the average of t. 
a random variable, let us now give another definition using (2.5) or Figure 5.1. We.  
can say that x is a random variable if it takes various values xi with probabilitie- - 
pi 

 

= f(x). This definition may explain the name random variable; .r is called 
variable since it takes various values. A random (or stochastic) process is one whoM __ 
outcome is not known in advance. The way the two dice fall is such an unknowi.  By analogy with t 
outcome, so the value of x is unknown in advance, and we call x a random variable random var'zabk z 

You may note that at first we thought of x as a dependent variable or function  
with the sample point as the independent variable. Although we didn't say much  
about it there was also a value of the probabilit p attached to each sample point 
that is p and x were both functions of the sample point. In the Last paragraph, %v( -. 
have thought of x as an independent variable with p as a function of x. This 1-, 

quite analogous to having both x and p given as functions of t and eliminating 
to obtain p as a function of x. We have here eliminated the sample point from  To obtain a me. 
the forefront of our discussion in order to consider directly the probability functioi: first list how much 
p = AX). deviations are posit 

(Problem 10). Inste 
Example 1. 	Let x = number of heads when three coins are tossed. The uniform sarnpli define the variance  

space is (2.3) and we could write the value of .r for each sample point in (2.3 
Instead, let us go immediately to a table of x and p = f(s). [Can you verify this r 
table by using (2.3), or otherwise?] 3) 

x 	0 	1 	2 	3 L 
8 	8 	8 

Other terms used for the probability function p = f(s) are: probability density (The variance 	some 
fraction, frequency function, or probability distribution (caution: not distribution are very close to p, 

function, which means the cumulative distribution as we will discuss later: see Fig- r(x) is large. 	Thu 
ure 5.2). The origins of these terms will become clearer as we go on (Sections 6 Surements; this is wk.  
and 7) but we can get some idea of the terms frequency and distribution from (5.1)  deviation of x. is o1e 

Suppose we toss three coins repeatedly; we might reasonably expect to get threr 
heads in about 	. of the tosses, two heads in about 2  of the tosses, etc. That is. 

each value of p = f(s) is proportional to the frequency of occurrence of that valu4 - 	 I 

of s—hence the term frequency function (see also Section 7). Again in (5.1), imag- 
ine four boxes labeled x = 0, 1. 21  3, and put a marble into the appropriate box ft.' - 
each toss of three coins. Then p = f(s) indicates approximately how the marble- 
are distributed into the boxes after many tosses—hence the term distribution. 

ple2. 	Forthedatain 
Mean Value; Standard Deviation 	The probability function f(s) of a ran- y (5.2), 	average ________ 
dom. variable x gives us detailed information about it, but for many purposes 

B 	(5.3), Var(s) = (0 want a simpler description. Suppose, for example, that x represents experiim'ntn 
measurements of the length of a rod, and that we have a large number N of mu 9 

surements x. We might reasonably take pi  = f(x j ) proportional to the number of 
BY 	5.4). o. = stanthz times jVi we obtained the value x, that is pi  = Ni/N. We are especially interested 

in two numbers, namely a mean or average value of all our measurements, and ,ionic The mean or avera 
number ,which indicates how widely the original set of values spreads out about that  or its expected raije c 
average. Let us define two such quantities which are customarily used to describe.- ' 	ii of u, the symb 
random variable. To calculate the average of a set of N numbers, we add them and - 	of X. 
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divide by N. Instead of adding the large number of measurements, we can multiply 
each measurement by the number of times it occurs and add the results. This gives 
for the average of the measurements, the value 

= Epix. 

By analogy with this calculation, we now define the average or mean value /1 of a 

random variable x whose probability function is f(x) by the equation 

(5.2) 	 P = average of x= LX i Pi 

To obtain a measure of the spread or dispersion of our measurements. we might 
first list, how much each measurement differs from the average. Some of these 
deviations are positive and some are negative; if we average them, we get zero 
(Problem 10). Instead, let us square each deviation and average the squares. We 
define the variance of a random variable x by the equation 

(5.3) 	 Var(x) = E(xi - i)2 f(x). 

(The variance is sometimes called the dispersion.) If nearly all the nieasurernents x 
are very close to j, therm Var(x) is small: if the measurements are widely spread, 
Var(x) is large. Thus we have a number which indicates the spread of the mea-
surements; this is what we wanted. The square root of Var(x). called the standard 

deviation of x. is often used instead of Var(r): 

(5.4) 	 = standard deviation of x = VVar(x). 

Example 2. For the data in (5.1) we can compute: 

By (5.2). p = average of x = 0 + 1. + 2 + 3. = = 

By (5.3). Var(x)= (o— 	+(1— )2 I+ (2— 
)2(3_)2 

_9 1 1 3,,1 3 .±. 9 1_3 
4 5 +4 	14 5T4 84' 

By (5.4), o', = standard deviation of x = /Var(x) = 

The mean or average value of a random variable x is also called its expectation 

or its expected value or (especially in quantum mechanics) its expectation value. 

Instead of M, the symbols Tr or E(x) or (x) may be used to denote the mean value 

of X. 
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(5.5) 	 7 = E(x) = (x) = = 

The term expectation comes from games of chance. 

Example 3. Suppose you will be paid $5 if a die shows a 5, $2 if it shows a 2 or a 3 
and nothing otherwise. Let x represent your gain in playing the game. Then t.h 
possible values of x and the corresponding probabilities are .x = 5 with p = 1, s = 2 
with p = , and x = 0 with p = . We find for the average or expectation of x: 

E(x) =xipi = $5. +$2. +$0- = $1.50. 

If you play the game many times, this is a reasonable estimate of your average gak 
per game; this is what your expectation means. It is also a reasonable amount t 
pay as a fee for each game you play. The term expected value (which means the sarn-
as expectation or average) may be somewhat confusing and misleading if you try 
interpret "expected" in an everyday sense. Note that the expected value ($1.50) of r 
is not one of the possible values of x, so you cannot ever "expect" to have x = $1.50. 
If you think of expected value as a technical term meaning the same as average. 
then there is no difficulty. Of course, in some cases, it makes reasonable sense with 
its everyday meaning; for example, if a coin is tossed n times. the expected number 
of heads is n/2 (Problem 11) and it is true that we may reasonably "expect" a fair 
approximation to this result (see Section 7). 

Cumulative Distribution Functions So far we have been using the probability 
function f(s) which gives the probability pi = f(x) that x is exactly x. In some 
problems we may be more interested in the probability that x is less than some 
particular value. For example. in an election we would like to know the probability 
that less than half the votes would be cast for the opposing candidate, that is, that 
our candidate would win. In an experiment on radioactivity, we would like to know 
the probability that the background radiation always remains below a certain level. 
Given the probability function f(s), we can obtain the probability that x is less 
than or equal to a certain value xi  by adding all the probabilities of values of x less 
than or equal to x. For example, consider the sum of the numbers on two dice; the 
probability function p = f(s) is plotted in Figure 5.1. The probability that x is, 
say, less than or equal to 4 is the sum of the probabilities that x is 2 or 3 or 4. that 
is, 1  + 2  + 	= . Similarly, we could find the probability that x is less than 36 36 36 6 
or equal to any given number. The resulting function of x is plotted in Figure 5.2. 
Such a function F(s) is called a cumulative distribution function; we can write 

(5.6) 	F(x) = (probability that x <xi) = 	f(x). 
xi 

Note carefully that, although the probability function f(s) may be referred to as a 
probability distribution, the term distribution function means the cumulative distri-
bution F(s). 
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ROBLEMS, SECTION 5 
hate of your average gain 
a reasonable amount to 

which means the same 
misleading if you try to 

pected value ($1.50) of z 
pect" to have x = $1.50, 
g the same as average. 

es  reasonable sense with 
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Set up sample spaces for Problems 1 to 7 and list next to each sample point the value of 
the indicated random variable x. and the probability associated with the sample point. 
Make a table of the different values :rj of x and the corresponding probabilities pi = f(x1). 
Compute the mean, the variance, and the standard deviation for x. Find and plot the 
cumulative distribution function F(x) 

1. Three coins are tossed; x = number of heads minus number of tails. 

2. Two dice are thrown; r = sum of the numbers on the dice. 

3. A coin is tossed repeatedly: x = number of the toss at which a head first appears. 

4. Suppose that Martian dice are 4-sided (tetrahedra) with points labeled I to 4. When 
a pair of these dice is tossed, let .r be the product of the two numbers at the tops of 
the dice if the product is odd; otherwise x = 0. 

5. A random variable x takes the values 0. 1, 2, 3, with probabilities , , , . 

6. A card is drawn from a shuffled deck. Let x = 10 if it is an ace or a face card; 
x = —1 if it is a 2; and z = 0 otherwise. 

7. A weighted coin with probability p of coming down heads is tossed three times; x = 
number of heads minus number of tails. 

8. Would you pay $10 per throw of two dice if you were to receive a number of dollars 
equal to the product of the numbers on the dice? Hint: What is your expectation? 
If it is more than $10, then the game would be favorable for you. 

9. Show that the expectation of the sum of two random variables defined over the 
same sample space is the sum of the expectations. Hint: Let pi, p. •., p,1  be the 
probabilities associated with the n sample points; let xl, x2. ''', x,, and yi, yz, 

y,, be the values of the random variables x and y for then sample points. Write 
out E(x), E(y). and E(x + y). 

10. Let A be the average of the random variable x. Then the quantities (x - are the 
deviations of x from its average. Show that the average of these deviations is zero. 
Hint: Remember that the sum of all the p, must equal 1. 

11. Show that the expected number of heads in a single toss of a coin is 1. Show in two 
ways that the expected number of heads in two tosses of a coin is 1: 

(a) Let x = number of heads in two tosses and find T. 

(b) Let .r = number of heads in toss 1 and y = number of heads in toss 2; find the 
average of .r + y by Problem 9. Use this method to show that the expected 
number of heads in n tosses of a coin is in. 
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12. Use Problem 9 to find the expected value of the sum of the numbers on the dice m 
Problem 2. 	 Comparison of Di 

how to define a prob 

13. Show that adding a constant K to a random variable increases the average by K 	. 	discussion with the d 
but does not change the variance. Show that multiplying a random variable by K 	 we plotted a vertical 
multiplies both the average and the standard deviation by K. 	 -.. 	of X. Instead of a dot 

14. As in Problem 11, show that the expected number of 5's in it tosses of a die is n 

	

	
horizontal line segme 
area under the hori 

15. Use Problem 9 to find T in Problem 7. 

	

	 (since the length of e 
instead of the ordina 

16. Show that a 2 = E(x2) - t2. Hint: Write the definition of c2  from (5.3) and (5.4 	 histogram. 
and use Problems 9 and 13. 

mpie 2. Now let us app. 
17. Use Problem 16 to find a in Problems 2. 6. and 7. 	 plotted the function 

6. CONTINUOUS DISTRIBUTIONS 

In Section 5. we discussed random variables x which took a discrete set of values j. If we consider an 
It is not hard to think of cases in which a random variable takes a continuous st' on (0, 1), the area u 
of values. 1/1 for this interval is 

and this is just the p 

Example 1. 	Consider a particle moving back and forth along the x axis from x = 0 particle is in this int' 
bility that the partik 

x = 1, rebounding elastically at the turning points so that its speed is constant subinterval of 10. lj. sa  (This could be a simple-minded model of an alpha particle in a radioactive nuclei- 
or f f(s) dx, that or of a gas molecule bouncing back and forth between the walls of a container.) Le . 

the position x of the particle be the random variable; then x takes a continuous se • curve from a to b. if t. 

of values from x = 0 to x = 1. Now suppose that, following Section 5. we ask for outside (0. 1), then f 
the probability that the particle is at a particular point x; this probability must bt value of the probabilit' 

the same, say k, for all points (because the speed is constant). In Section 5. with 4 When f(s) is co 
finite number of points, we would say k = 1/N. In the continuous case, there ar(.- uniformly distributed 
an infinite number of points so we would find k = 0, that is, the probability that is not constant. 
the particle is at a given point) must be zero. But this is not a very useful result 
Let us instead divide (0,1) into small intervals dx; since the particle has constar P193. 	Thistimesuppce  
speed, the time it spends in each dx is proportional to the length of dx. In fact 

plane (no frietion 	re 
since the particle spends the fraction (dx)/l of its time in a given interval dx. th 

bottom and reaching z 
probability of finding it in dx is just (dx)/l. .: 	

. 	namely 1rrtt,2 + mgy is - 	have 
f(x) 

II  (6.1) 

1• r*ll 
I The probability of find 

A I 
I  is proportional to the 

dt = (ds)/v; from Fig-ui 
we have 

C 	 I 	I 	 I 	I 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 Since the probabi1it 

Figure 6.1 
is proportional to dt. w 
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Comparison of Discrete and Continuous Probability Functions To see 
how to define a probability function for the continuous case and to correlate this 
discussion with the discrete case, let us return for a moment to Figure 5.1. There 
we plotted a vertical distance to represent the probability p = f(s) of each value 
of x. Instead of a dot (as in Figure 5.1) to indicate p for each x. let us now draw a 
horizontal line segment of length 1 centered on each dot, as in Figure 6.1. Then the 
area under the horizontal line segment at a particular xi is f(x) . 1 = f(x) = Pi 
(since the length of each horizontal line segment is 1). and we could use this area 
instead of the ordinate as a measure of the probability. Such a graph is called a 
histogram. 

ample 2. Now let us apply this area idea to Example 1. Consider Figure 6.2. We have 
plotted the function 

f(s) - 
 

f 
i/i, 0 <x < 1, 

- 0. x<0 and x>1. 

If we consider any interval x to x + dx f(X)  

on (0. 1), the area under the curve f(s) = 
1/i for this interval is (1 /1) dx or f (x) dx, 	' 
and this is just the probability that the 
particle is in this interval. The proba- 	o 	I 
hility that the particle is in some longer 	° 

subinterval of (0. 1), say (a, b), is (b a) /I 
or f f(x) dx, that is. the area under the 	 Figure 6.2 
curve from a to b. If the interval (a, b) is 

outside (0, 1), then f f(s) dx = 0 since f(s) is zero, and again this is the correct 
value of the probability of finding the particle on the given interval. 

When f(s) is constant over an interval (as in Figure 6.2), we say that x is 
uniformly distributed on that interval. Let us consider an example in which f(s) 
is not constant. 

11e3. This time suppose the particle of Example I is sliding up and down an inclined 
plane (no friction) rebounding elastically (no energy loss) against a spring at the 
bottom and reaching zero speed at height y = h (Figure 6.3). The total energy, 
namely 1mv' + rngy is constant and equal to mgh since v = 0 at y = h. Thus we 
have 

P numbers on the 

reases the average 
a random variable 
K. 

n tosses of a die is 

--(mgh - myy) = 2g(h - y). 
In 

The probability of finding the particle within an interval dy at a given height y 
is proportional to the time dt spent in that interval. From v = ds/dt, we have 
dt = (ds)/v; from Figure 6.3, we find ds = (dy)csco. Combining these with (6.1) 
we have 

dt — 	— 
— (dy)cscc 

v 
Since the probability f(y) dy of finding the particle in the interval dy at height y 

is proportional to dt, we can drop the constant factor (csc 	and say that 

(6.1) 
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Figure 6.3 

f(y) dy is proportional to dy/ ,/hT. In order to find f(y), we must multiply by 

constant factor which makes the total probability f f(y) dy equal to 1 since this 
the probability that the particle is somewhere. You can easily verify that 

1(y) dy - 
_1 	dy 

or f(y) 
 2./K(h - ii) 

A graph of f(y) is plotted in Figure 6.4. Note that although 1(y)  becomes infinite 
at y = h, the area under the f(y) curve for any interval is finite; this area represents 
the probability that the particle is in that height interval. 

f(y) 

0 Y 

Figure 6.4 

We can now extend the definitions of mean (expectation). variance, standarL 
deviation, and cumulative distribution function to the continuous case. Let 1(x) b- 
a probability density function; remember that f°° f(x) dx = 1 just as 	p = 
The average of a random variable x with probability density function f(x) is 

(6.2) 	 ==E(x)=(x)=fxf(x)dx. 
 00 

(In writing the limits -, oc here, we assume that f(s) is defined to be zero or. 
intervals where the probability is zero.) Note that (6.2) is a natural extension of 

Section 6 

the sum in (5.5). He 
Section 5 as the aver 

(6.3) 

As before, the stand 
the cumulative distrik 
random variable is lea 
under the f(s) curve 
f(s) from —3c to c 

r- Thus we have 

(6.4) 

pie 4. For the problem 

01 

By (6.2). j 
= fo  

By (6.3). Variyi = 

so standard de 

By (6.4), cumulath 

1 

2v'7Jo 

Why "density funct 
tion f(s) is often call, 
sider (6.2). If f(s) rep 
the center of mass of t 

(6.5) 

where the integrals an 
with f(s) = 0 outside 
x has some value, and 
the same; we see that i 
of x corresponds to the 
In a similar way, we ca 
distribution about the 
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j. we must multiply by a 
fy equal to I since this is 
isily verify that 

1 

(h — y) 

gh 1(y) becomes infinite 
nite: this area represents 

the sum in (5.5). Having found the mean of x, we now define the variance as in 
Section 5 as the average of (x - /42, that is, 

00  (6.3) 	 Var(x) = 	/421(x) dx = o. 

As before, the standard deviation o is the square root of the variance. Finally, 
the cumulative distribution function F(x) gives for each x the probability that the 
random variable is less than or equal to that x. But this probability is just the area 
under the f(x) curve from —oc up to the point x. Also, of course, the integral of 
f(x) from —oc to cc must = 1 since that is the total probability for all values of x. 
Thus we have 

(6.4) 	F(x) 
= ii: f(u) du, 	f  dx = F(oo) =1. 

E xample 4. For the problem in Example 3, we find: 

_ 	 1fh1 

 vfh
By (6.2), p= [ yf(y)dy_---- 	y 	dy=h. 

By (6.3). Var(y) = 
	

- jt5) 2 f(y) dy f h (y - h) 	dy = 

.io 	 2 
2 1 	 4h2  

\ 3 

so standard deviation o, = Var(y) = 2h/V. 
ry 

Jo 
1 fy du 

By (6.4), cumulative distribution function F(y) = I f(u) du 

 

Why "density function"? In Section 5, we mentioned that the probability func- 
tion f(s) is often called the probability density. We can now explain why. Con- 

_____ 	sider (6.2). If 1(x) represents the density (mass per unit length) of a thin rod, then 
on). variance, standard  

- 	 the center of mass of the rod is given by [see Chapter 5, (3.3)J 
nuous case. Let f(s) be 
= I just as 	p  
Y function f(x) is 	(6.5) 	 = f xf (x) dx/f f(x) dx, 

where the integrals are over the length of the rod, or from —oc to cc as in (6.2) 
with f(s) = 0 outside the rod. But in (6.2), f f(s) dx is the total probability that 

t I 	
x has some value, and so this integral is equal to 1. Then (6.5) and (6.2) are really 
he same: we see that it is reasonable to call 1(x) a density, and also that the mean 

of x corresponds to the center of mass of a linear mass distribution of density f(s). 
defined to be zero on 	 In a similar way, we can interpret (6.3) as giving the moment of inertia of the mass 

a natural extension of 	 distribution about the center of mass (see Chapter 5, Section 3). 
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Joint Distributions We can easily generalize the ideas and formulas above to 
two (or more) dimensions. Suppose we have two random variables x and y: we 
define their joint probability density function f(x. y) so that f(x1 , y) dx d.tj is the 
probability that the point (x. y) is in an element of area dxdy at x = x, y = 
Then the probability that the point (x, y) is in a given region of the (x, y) plane. i. 
the integral of f(x. y) over that area. The average or expected values of .r and y. 
the variances and standard deviations of x and y, and the covariance of x. y (see 
Problems 13 to 16) are given by 

f
00 f°' 

 xf(x.y)dxdy, 
00 
00 00 

V = j f yf(x, y) dx dy.

00 

(6.6) 	 Var(x) 
= f j(x - 7)'f (x. y) dxdy = c. 

Var(y) = fj(y_V)2 f(x.)dxdY = o. 
00 

Cov(x, y) = f f (x - )(y - V)f(x, y) dx dy. 

You should see that these are generalizations of (6.2) and (6.3); that (6.6) can be 
interpreted as giving the coordinates of the center of mass and the moments of 
inertia of a two-dimensional mass distribution; and that similar formulas can he 
written for three (Or more) random variables (that is, in three or more dimensions). 
Also note that the formulas in (6.6) could be written in terms of polar coordinates 
(see Problems 6 to 9). 

We have discussed a number of probability distributions both discrete and con-
tinuous, and you will find others in the problems. We will discuss three very Impor-
tant named distributions (binomial, normal, and Poisson) in the following sections. 
Learning about these and related graphs. formulas, and terminology should snake 
it possible for you to cope with any of the many other named distributions you find 
in texts, reference books, and computer programs. 

PROBLEMS, SECTION 6 

1. (a) Find the probability density function f(x) for the position x of a particle 
which is executing simple harmonic motion on (—o. a) along the x axis. (See 
Chapter 7, Section 2, for a discussion of simple harmonic motion.) Hint: The 
value of x at time t is x = a cost. Find the velocity dx/dt; then the probability 
of finding the particle in a given dx is proportional to the time it spends there 
which is inversely proportional to its speed there. Don't forget that the total 
probability of finding the particle somewhere must be 1. 

(b) Sketch the probability density function f(x) found in part (a) and also time 
cumulative distribution function F(x) [see equation (6.4)]. 

(c) Find the average and the standard deviation of x in part (a). 

2. It is shown in the kinetic theory of gases that the probability for the distance a 
molecule travels between collisions to be between x and z + dx, is proportional to 
e" dx, where ,\ is a constant. Show that the average distance between collisions 
(called the "mean free path") is). Find the probability of a free path of length > 2A. 

A ball is thrown 
density function 
h and h+dh. Fit 

In Problem I we 
oscillator. In qt 
oscillator (in the 
x takes values fm 
of x, (Iii quantum 
in position and is 

5. The probability * 
proportional to e' 
function F(t). Fl 
particle. Compan 
value of I when e 

6. A circular garden  
distributed over t 
some particular a 
send to he in the  
particular seed) b 
probability for a 

(a) Repeat Prc& 
earth, say al 
on the eartl 
seeds could I 
be uniformly 

(b) Also find F 
Do your a 

Given that a parai 
of being found is 
distribution ftu 
function f(r). HI 
radius r. Find Fa 

9. A hydrogen atom 
the electron re-ml 
the ground st*e 
distance r f from ( 
the electron is is 
is proportional tt 
coordinates se., 
f(r)dr is the pre 
from the proton 
must be 1.) om 
then say that the 
of r 1  is a'. 

10. Do Problem 5.10 

11. Do Problem 5.13 

12. Do Problem 5.16 

13. Given a joint din.,  
E(y) and Varx 
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and formulas above to 
a variables x and y: we 
hat f(x2 ,y)dxdy is the 
lrdy at x = x1 , y = y. 
ion of the (x, y) planet  
ected values of x and 
E- covariance of x, y (see 

= 

= CT, 

dz dy 

3. A ball is thrown straight up and falls straight back down. Find the probability 
density function f(h) so that f(h) dh is the probability of finding it between height 
h and h + dh. Hint: Look at Example 3. 

4. In Problem 1 we found the probability density function for a classical harmonic 
oscillator. In quantum mechanics, the probability density function for a harmonic 
oscillator (in the ground state) is proportional to 	where cs is a constant and 
x takes values from - tà oo. Find f(x) and the average and standard deviation 
of x. (In quantum mechanics, the standard deviation of x is called the uncertainty 
in position and is written ax.) 

5. The probability for a radioactive particle to decay between time t and time t + dt is 
proportional to e'. Find the density function f(t) and the cumulative distribution 
function F(t). Find the expected lifetime (called the mean life) of the radioactive 
particle. Compare the mean life and the so-called "half life" which is defined as the 
value of t when C_At = 1/2. 

6. A circular garden bed of radius 1 m is to be planted so that N seeds are uniformly 
distributed over the circular area. Then we can talk about the number n of seeds in 
some particular area A. or we can call n/N the probability for any one particular 
seed to be in the area A. Find the probability F(r) that a seed (that is, some 
particular seed) is within r of the center. (Hint: What is F(1)?) Find f(r) dr, the 
probability for a seed to be between r and r + dr from the center. Find F and o,. 

-. 	 7. (a) Repeat Problem 6 where the "circular" area is now on the curved surface of the 

ss and the moinent of 	 on the earth's surface) with a < 7rR/3 where R = radius of the earth. The 
similar formulas can be 	 seeds could be replaced by, say, radioactive fallout particles (assuming these to 
'ee or more dimensions 	 be uniformly distributed over the surface of the earth). Find F(s) and f(s). 
ins of polar coordinate..: 	 (b) Also find F(s) and f(s) if a < 1 <<R (say a < 1 mile where R = 4000 miles). 

6.3): that (6.6) can 	

j 	
earth, say all points at distance a from Chicago (measured along a great circle 

Do your answers then reduce to those in Problem 6? 
both discrete and con- 

8. Given that a particle is inside a sphere of radius 1, and that it has equal probabilities 
iscu.ss three very ixnpor- 	 of being found in any two volume elements of the same size, find the cumulative 
a the following sections 	 distribution function F(r) for the spherical coordinate r, and from it find the density 
tminology should make 	 function f(r). Hint: F(r) is the probability that the particle is inside a sphere of 
d distributions you find 	 radius r. Find F and a. 

9.  A hydrogen atom consists of a proton and an electron. According to the Bohr theory, 
the electron revolves about the proton in a circle of radius a (a 	5 . 10 9cm for 
the ground state). According to quantum mechanics, the electron may be at any 

position x of a particle 
distance r (from 0 to oc) from the proton: for the ground state, the probability that 

a 	along the x axis. (See 
the electron is in a volume element dV, at a distance r to r + dr from the proton, 

ionic motion.) Hint: The 
is proportional to e 2'dV. where a is the Bohr radius. 	Write dV in spherical 

r,*-, then the probability 
coordinates (see Chapter 5, Section 4) and find the density function f(r) so that 

the time it spends there 
f(r) dr is the probability that the electron is at a distance between r and r + dr 

ant forget that the total 
from the proton. (Remember that the probability for the electron to be somewhere 

e 1. 
must be 1.) Computer plot f(r) and show that its maximum value is at r = a: we 
then say that the most probable value of r is a. Also show that the average value 

in part (a) and also the of r 1  is a 1. 

10.  Do Problem 5.10 for a continuous distribution. 
part (a). 

11.  Do Problem 5.13 for a continuous distribution. 
ibility for the distance a 
+ dx, is proportional to 12.  Do Problem 5.16 for a continuous distribution. 

stance between collisions 13.  Given a joint distribution function f(x,y) as in (6.6), show that E(x+y) = 
free path of length > 2). E(y) and Var(x + y) = Var(s) + Var(y) + 2 Cov(x, y). 
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14. Recall that two events A and B are called independent if p(AB) = p(A)p(B). Sim-
ilarly two random variables x and y are called independent if the joint probability 
function f(x, y) = g(x)h(y). Show that if x and y are independent, then the expec-
tation or average of zy is E(xy) = E(x)E(y) = 

15. Show that the covariance of two independent (see Problem 14) random variables i 
zero, and so by Problem 13, the variance of the sum of two independent randorr. 
variables is equal to the sum of their variances. 

16. By Problem 15, if x and y are independent, then Cov(x, y) = 0. The converse 
is not always true, that is, if Cov(x, y) = 0, it is not necessarily true that the 
joint distribution function is of the form f(x,y) = g(x)h(y). For example, suppose 
f(x,y) = (3y2  + cos x)/4 on the rectangle —ir/2 < x < 7r/2, —1 < y < 1, anc 
f(x, y) = 0 elsewhere. Show that Cov(x, y) = 0, but x and y are not independent 
that is, f(x,y) is not of the form g(x)h(y). Can you construct some more examples 

7. BINOMIAL DISTRIBUTION 

Example 1. Let a coin be tossed 5 times; what is the probability of exactly 3 heads out of 

the 5 tosses? We can represent any sequence of 5 tosses by a symbol such as thhth 
The probability of this particular sequence (or any other particular sequence) it 

( ) since the tosses are independent (see Example 1 of Section 3). The number of 
such sequences containing 3 heads and 2 tails is the number of ways we can select 3 
positions out of 5 for heads (or 2 for tails), namely C(5,3). Hence, the probability 
of exactly 3 heads in 5 tosses of a coin is C(5,3)()5. Suppose a coin is tossed  
repeatedly, say n times; let x be the number of heads in the n tosses. We want to 
find the probability density function p = f(s) which gives the probability of exacti 
x heads in n tosses. By generalizing the case of 3 heads in 5 tosses, we see that 

(7.1) 	 f(s) = C(n,x)()' 

Bernoulli Trials In the two examples we have just done, we have been concerned 
with repeated independent trials, each trial having two possible outcomes (h or 
A or N) of given probability. There are many examples of such problems; let 
consider a few. A manufactured item is good or defective; given the probability 
of a defect we want the probability of s defectives out of n items. An archer ha 
probability p of hitting a target; we ask for the probability of x hits out of n tries 
Each atom of a radioactive substance has probability p of emitting an alpha particle 
during the next minute; we are to find the probability that x alpha particles will be 
emitted in the next minute from the n atoms in the sample. A particle moves back 
and forth along the x axis in unit jumps: it has, at each step, equal probabilities of 

Gr*pw 
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Example 2. Let us do a similar problem with a die, asking this time for the probability of 
exactly 3 aces in 5 tosses of the die. If A means ace and N not ace, the probability 
of a particular sequence such as ANNAA is 	 since the probability of 
A is, the probability of N is A. and the tosses are independent. The number of 
such sequences containing 3 A's and 2 N's is C(5, 3); thus the probability of exactly 	41 
3 aces in 5 tosses of a die is C(5,3)()3()2 . Generalizing this, we find that the 
probability of exactly x aces in n tosses of a die is 

(7.2) 
	

f(s) = 



z 
a 

Binomial distribution graphs of sf(x) plotted against x/s 

no 

Figure 7.4 Figure 7.5 
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p(AB) = p(A)p(B). Sun- 	 Graphs of the binomial distribution, f (x) = C(a )pqU_X 

nt if the joint probability 

	

ependent, then the expec- 	 fix)- 
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m 14) random variables L% 	
0.2- 
°' 

two independent random 
0 1 12345678 

z!,) = 0. The converse 
necessarily true that the Figure 7.1 

:. For example, suppose R. 
r/2..-1 < y < 1, and f(x) 

d y are not independent. 0.3 
p - -uct some more examples" 0.2 	- 

0.1 	
- 
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Jf exactly 3 heads out of 
a symbol such &s thhth. Figure 7.2 

particular sequence) is 
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ppose a coin is tossed 
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X 

e probability of exactly 
5 tosses, we see that Figure 7.3 

jumping forward or backward. (This motion is called a random walk; it can be used 
as a model of a diffusion process.) We want to know the probability that, after n 

ie for the probability of jumps, the particle is at a distance 
iot ace the probability .  d = number x of positive jumps - number (n - x) of negative jumps. 
since the probability of 
ndent. The number of from its starting point; this probability is the probability of x positive jumps out of 

e probability of exactly a total of n jumps. 

this, we find that the In all these problems, something is tried repeatedly. At each trial there are two 
possible outcomes of probabilities p (usually called the probability of "success") and 

we have been concerned 
sible outcomes (h or t, 
f such problems; let's 
given the probability 
items. An archer has 
x hits out of n tries. 

itting an alpha particle 
alpha particles will be 
A particle moves back 
equal probabilities of 
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q = 1 
- 

p (where q = probability of "failure"). Such repeated independent triak 	 increases. This 
with constant probabilities p and q are called Bernoulli triaLs, 	 probable value, us 

difference "numbez 

Binomial Probability Functions Let us generalize (7.1) and (7.2) to obtain a with n (Figures 7 
formula which applies to any similar problem, namely the probability f(s) of exactly 	 is 	apt to be closet 

x successes in n Bernoulli trials. Reasoning aa wc did to obtain (7 1) and (7 2), 	 k 	reason that se cm

find that 	 estimate of p. 

Chebyshev's Ina 
(73) 	 f(x)=C(n,.x)p q 	find useful We, cog  

let izbe the mean i 
that if we select. an' 

We might also ask for the probability of not more than x successes in n trials. This 	 by more than t, is 

is the sum of the probabilities of 0, 1,2,..' , r successes, that is, it is the cumtila- 	 by more than a fin 
fibe tive distribution function F(s) for the random variable .r whose probability densit 	deviation a. we 

function is (7.3) [see (5.6)]. We can write 	 less than o'2/t2 = 

F(s) = f(0) + f(1) + ... + f(s) 

= C(n, 0)p°q' + C(n, 1)p'q 	+ 	+ C(n. 	)pZqflX 

where the sum is o" 

= 	C(n, u) puqn 	= 	

(n)
puqn_u. - pi ~ t, we get 

U=0 
(7.5) 

Observe that (7.3) is one term of the binomial expansion of (p + q)' and (7.4 
is a sum of several terms of this expansion (see Section 4. Example 2). 	For thi 
reason. the functions f(s) in (7.1), (7.2), or (7.3) are called binomial probability (ni If we replace each z 

density) functions or binomial distributions, and the function F(s) in (7.4) is calleG 
a binomial cumulative distribution function. (7.6) 

We shall find it very useful to computer plot graphs of the binomial density 
function f(s) for various values of p and n. (See Figures 7.1 to 7.5 and Problems 1 
to 8.) Instead of a point at y = f(s) for each x, we plot a horizontal line segment o: But 	f(s) is 
length 1 centered on each x as in Figure 6.1: the probabilities are then represented by more than t. and ( 
by areas under the broken line, rather than by ordinates. From Figures 7.1 to 7.3 
and similar graphs, we can draw a number of conclusions. The most probable valut 

' 	 Laws of Large Nu3 
of x [corresponding to the largest value of f(s)] is approximately x = np (Probleim' general comments ad 
10 and 11); for example for p = 	. the most probable value of x is in for even n: us state and pro 
for odd n, there are two consecutive values of x, namely 	(n ± 1), for which tIi Iom variable whose 
probability is largest. The graphs for p = 	are symmetric about x = in 	For Problems 9 and 13 we 
p 	, the curve is asymmetric, favoring small x values for small p and large .r  

values for large p. As n increases, the graph of 1(x) becomes wider and flatter (tht 77) 	(proba  
total area under the graph must remain 1). The probability of the most probable 
value of x decreases with n. For example, the most probable number of heads in Let us choose the art  
8 tosses of a coin is 4 with probability 0.27; the most probable number of hea(6 where e is now arbitn 
in 20 tosses is 10 with probability 0.17: for 106 tosses, the probability of exactly 
500,000 heads is less than iO". 1 	(7.8) 	(probabil 

Let us redraw Figures 7.1 and 7.2 plotting nf(x) against the relative number of 
successes s/n (Figures 7.4 and 7.5). Since this change of scale (ordinate times n. or, when we divide tl 
abscissa divided by n) leaves the area unchanged, we can still use the area to 

represent probability. Note that now the curves become narrower and taller as n 7.9) 	probe  
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ed independent trials 	 increases. This means that values of the ratio s/n tend to cluster about their most 
probable value, namely np/n = p. For example, if we toss a coin repeatedly, the 
difference "number of heads - number of tosses" is apt to be large and to increase 

and (7.2) to obtain * 	 with ii (Figures 7.1 and 7.2), but the ratio "number of heads + number of tosses" 

ability f(s) of exact iJ 	
is apt to be closer and closer to 1 as n increases (Figures 7.4 and 7.5). It is for this 

in (7.1) and (7.2), 	 reason that we can use experimentally determined values of s/n as a reasonable 
estimate of p. 

esses in ii trials. This 
is, it is the cumula- 

se 

 

probability density 

Chebyshev's Inequality This is a simple but very general result which we will 
find useful. We consider a random variable x with probability function f(s), and 
let p be the mean value and a the standard deviation of x. We are going to prove 
that if we select any number t, the probability that x differs from its mean value p 
by more than t, is less than a2/t2. This means that x is unlikely to differ from p 
by more than a few standard deviations; for example, if t is twice the standard 
deviation a, we find that the probability for x to differ from p by more than 2a is 
less than a2 /t2 = a2 /(2a)2 = . The proof is simple. By definition of a, we have 

= 	- p)2f(x) 

where the sum is over all x. Then if we sum just over the values of .r for which 
Ix 
- I > t, we get less than a: 

(7.5) 	 Q.2> 	(x - p)2 f(x). 

If we replace each x - p by the number tin (7.5), the sum is decreased, so we have 

it 	(7.6) 	a> 	tf(x) = t2 	f(s) 	or 	 f(s) 
< 

I 	But E1.1> f(s) is just the sum of all probabilities of x values which differ from p 

by more than t. and (7.6) says that this probability is less than c2/t2, as we claimed. 

J 	
Laws of Large Numbers Statements and proofs which make more precise our 
general comments about the effect of large n are known as laws of large numbers. 
Let us state and prove one such law. We apply Chebyshev's inequality to a ran-
dom variable whose probability function is the binomial distribution (7.3). From 
Problems 9 and 13 we have p = np and a =Vnpq. Then by Chebyshev's inequality, 

(7.7) 	(probability of Ix - npj > t) 	is less than npq/t2. 

I 	Let us choose the arbitrary value of t in (7.7) proportional to n, that is, t = ne 
where F is now arbitrary. Then (7.7) becomes 

(7.8) 	(probability of Ix - ripj ~! ne) 	is less than npq/n2€ 2, 

or, when we divide the first inequality by n. 

(7.9) 	(probability of J - p ~ 	 n is less tha 	
- 

f ip - q)T1 and (7.4 
xample 2). For this 
omia1 probability (or 
Fr) in (7.4) is called 

I he binomial density 
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Recall that s/n is the relative number of successes: we intuitively expect s/n. to be 	 . THE NORMAL OR GAL 

	

near p for large n. Now (7.9) says that, if c is any small number, the probability S 	 The graph of the nor 

	

less than pq /(n€ 2) for s/n to differ from p by e;  that is, as n tends to infinity, this 	
V• 	

know as the normal 
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probability tends to zero. (Note, however, that s/n need not tend to p.) This is great deal because. ag 
one form of the law of large numbers and it justifies our intuitive ideas. 	 2 and 3), but also oti 

of trials or measurem 
PROBLEMS, SECTION 7 	 The probability 

For the values of n indicated in Problems 1 to 4: 	 V 	F(s) for the normal 

(a) Write the probability density function 1(x) for the probability of x heads in n tosses 
of a coin and computer plot a graph of f(s) as in Figures 7.1 and 7.2. Also computer 
plot a graph of the corresponding cumulative distribution function F(s). 	 f 	= 

(b) Computer plot a graph of nf(x) as a function of s/n as in Figures 7.4 and 7.5. 	 (8.1) 

(c) Use your graphs and other calculations if necessary to answer these questions: What 	 F(s) = - 

	

is the probability of exactly 7 heads? Of at most 7 heads? [Hint: Consider F(s).] Of 	V 

at least 7 heads? What is the most probable number of heads? The expected number 
of heads? 	 It is straightforward 

1. it = 7 	2. n =12 	3. n = 15 	4. n = 18 	 ability density f(s) 
5. Write the formula for the binomial density function 1(x) for the case n = 6,p = 1/6. 	 V 	is a. Also we can sho 

	

representing the probability of, say, S aces in 6 throws of a die. Computer plot f(z ))) 	 must be for a probab 

	

as in Figure (7.3). Also plot the cumulative distribution function F(s). What is 	 random variable x he 

	

the probability of at least 2 aces out of 6 tosses of a die? Hint: Can you read the 	 xj and X2  which is 
probability of at most one ace from one of your graphs?  

	

For the given values of n and p in Problems 6 to 8, computer plot graphs of the binomial 	. 	 V  

	

density function for the probability of x successes in n Bernoulli trials with probability p 	 (8.2) 

of success. 	 V  

6. n = 6, p = 5/6 (Compare Problem 5) 

7. n=50,p=1/5 	 8. n=50,p=4/5 	 V  

9. Use the second method of Problem 5.11 to show that the expected number of sue-
ceases in n Bernoulli trials with probability p of success is i' = np. Hint: What is 
the expected number of successes in one trial? 

10. Show that the most probable number of heads in n tosses of a coin is in for even 
[that is, f(s) in (7.1) has its largest value for x = n/2] and that for odd a. ther 
are two equal "largest" values of 1(x). namely for x = 1  (n + 1) and x = (n - I 

	

Hint: Simplify the fraction f(x + 1)/f (s), and then find the values of x for which 	- 

	

it is greater than 1 [that is, f(x + 1) > f(s)], and less than or equal to 1 [that is. 	' 
f(x + 1) <f(s)]. Remember that x must be an integer. 	

, 
11. Use the method of Problem 10 to show that for the binomial distribution (7.3), the 

most probable value of x is approximately np (actually within 1 of this value). 	 V 

12. Let x = number of heads in one toss of a coin. What are the possible values of x and 	 A normal density 
their probabilities? What is i? Hence show that Var(s) = [average of (x - 	 symmetric with resp 

	

= , so the standard deviation is. Now use the result from Problem 6.15 "variance 	 area from -oc  to p 1 

	

of a sum of independent random variables = sum of their variances" to show that if 	 - 	A change in /1 merely 
x = number of heads in a tosses of a coin, Var(s) = 	and the standard deviation 	 or widens and flattens 

in or makes the graph 
13. Generalize Problem 12 to show that for the general binomial distribution (7.3. 	. 	to p + a is 0.6827. t 

Var(s) = npq. and a = '/• 	 1 standard deviation 
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THE NORMAL OR GAUSSIAN DISTRIBUTION 

The graph of the normal or Gaussian distribution is the bell-shaped curve you may 
know as the normal error curve (Figure 8.1). The normal distribution is used a 
great deal because, as we shall see, it is not only of interest in itself (see Problems 
2 and 3), but also other distributions become almost normal when n (the number 
of trials or measurements) becomes large (see Figures 8.2 and 8.3). 

The probability density function f(s) and the cumulative distribution function 

F(s) for the normal or Gaussian distribution are given by 

1 
f(s) = 	e__ 2 I(2  

(8.1) 
F(s) = 	ii: t)22 2) dt 	

Normal distribution 

It is straightforward to show (Problem 1) that if x is a random variable with prob-
ability density f(s) in (S. 1), then the mean of x is p and the standard deviation 
is a. Also we can show that the integral of f(s) from —oc to oc is equal to 1 as it 
must be for a probability function. Then the probability that a normally distributed 
random variable x lies between x, and X2  is the area under the f(x) curve between 

x1  and X2 which is 

(82) 	 F(s2) —F(s1) = probability that Xj :5 x 

p4u s.3u p4o p-u p p#u 1s+2u p+3u p+4r 

Figure 8.1 

A normal density function graph (Figure 8.1) has its peak at x = p and is 
symmetric with respect to the line x = p. Since the area from —oc to oo is 1, the 
area from —no to p is 1  (that is, F(p) = i.), and similarly the area from p to oo is 
A change in p merely translates the graph with no change in shape. An increase in 
a widens and flattens the graph so that the area remains 1, and similarly a decrease 
in a makes the graph taller and narrower. (Problems 4 to 6). The area from p - a 

to p + a is 0.6827, that is, the probability that x differs from its mean value by 
1 standard deviation or less. is just over 68%. The probability that Ix - ILI 5 2a 

S 

xpected number of suc-
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is over 95% and the probability that Is - pj 3or is over 99.7%. Note that these 
probabilities are independent of the values of p and a (Problem 7). 

Normal Approximation to the Binomial Distribution As an example of 
approximating another distribution by a normal distribution, let's consider the bi-
nomial distribution (7.3). For large n and large rip, we can use Stirling's forinulit 
(Chapter 11, Section 11) to approximate the factorials in C(n, x) in (7.3) and make 
other approximations to find 

(8.3) 	f(s) = c(n,$)pxqn_x , 	1 	e_ (x_ 2 /( 2  
/2pq 

02 

• 
I I 

0 1 2 3 4 5 6 7 8 

Figure 8.2 Binomial distribution for n = 8, p = 
and the normal approximation. 

The sign 's means (as in Chapter 11. Section 11) that the ratio of the exact binomial 
distribution (7.3) and the right-hand side of (8.3) tends to 1 as n - X. An outline 
of a derivation of (8.3) is given in Problem 8. but you may be more impressed by 
doing some computer plotting of graphs like Figures 8.2 and 8.3 (Problems 9 and 10 
Although we have said that equation (8.3) gives an approximation valid for large n 
the agreement is quite good even for fairly small values of ii. Figure 8.2 shows this 
for the case n = 8. The binomial distribution f(s) is defined only for integral .r 
you should compare the values of 1(x) with the values of the approximating norma: 
curve at integral values of x. When n is very large (Figure 8.3), a graph of the exact 
binomial distribution is very close to the normal approximation (Problem 9). 

Section 8 

p and standard dev 
binomial distributlo 

0.08 
0.07 
0.06 

0.05 
0.04 
0.03 
002 
0.01 

J 	ja 	qU 	4D 	OU 	Do 	DV 	OD 	'U 

Figure 8.3 Binomial distribution for n = 100, p = 3. 

In (8.3), the left-hand side is the exact binomial distribution and the right- 

	

hand side is a normal distribution with p = rip and a = 	as we see by 
comparing (8.3) and (8.1). Recall from Problems 7.9 and 7.13 that the mean value 
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9.7. Note that 
ileth 7). 

rn As an example 
z, let's consider the 
use Stirling's form 

rj in (7.3) and ma 

p and standard deviation a for a random variable whose probability function is the 
binomial distribution (7.3) are also p = np and a = 

(8.4) 	
For the binomial distribution and its normal approximation, 

We can expect this in general; whatever the p and a are for a given distribution, 
the normal approximation will have the same p and a. 

_I 
P— , 

x 

Example 1. Find the probability of exactly 52 heads in 100 tosses of a coin using the 
binomial distribution and using the normal approximation. 

See Figure (8.3) which is a plot of the binomial probability density function with 
Tm = 100.p = . We find by computer for x = 52, binomial f(52) = 0.07353, which 
you could also read approximately from Figure (8.3). 

For the normal approximation, we find from (8.4), p = np = 100' = 50, 

a = 	= ,/15' . = 5. Then for the normal approximation with p = 50, 

a = 5, we find by computer for x = 52, normal f(52) = 0.07365. 

Example 2. Find the probability P(45, 55) of between 45 and 55 heads in 100 tosses of a 

) of the exact binomial 	 coin, that is 45 .r S  55. 
aos n 	x. An outline . 	 As in Example 1, for the binomial distribution we have n = lOO,p = . The 

be more impressed by 	 cumulative binomial distribution function F(x) in (7.4) gives P(45, 55) as a sum of 

3 (Problems 9 and io. 	 ternis: we want the sum of the 11 terms with x = 45. 46,.. 55. By computer. we 

ation valid for large n. -. 	 can find F(55). the binomial cumulative distribution function with x = 55, which is 

Figure 8.2 shows this 	 the probability of 55 heads or less, and then find and subtract F(44). the probability 

d only for integral I: •. 	 of 44 heads or less. Thus we find P(45, 55) = binomial F(55) - binomial F(44) = 

Ipproximating normal 	 0.72875. 
Is 

a graph of the exact 	 For the normal approximation, we find by computer from (8.2), P(45. 55) = 

ion Problem 9). 	 normal F(55) - normal F(45) = 0.68269. We can get a better approximation by 
integrating from 44.5 to 55.5: this corresponds more closely to the appropriate area 
under the exact binomial graph in Figure 8.3 by including the whole steps at x = 45 
and x = 55. This gives P(44.5, 55.5) = normal F(55.5)—normal F(44.5) = 0.72867, 

J 	Standard Normal Distribution This is just the normal distribution in (8.1) 
for the special case p = 0 and a = 1. The density function is often denoted by (z), 

and the corresponding cumulative distribution function by (z): 

(8.5) 	
v 2ir z 
	 Standard normal distribution 

(z) 
=j 

e'2" du. 

;ution and the right- 
as we see by 

that the mean value 
The cumulative distribution function (z) is related to the error function (see Chap-
ter 11, Section 9). 
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It is sometimes convenient to write the functions in (8.1) in terms of (z) and 
(z). We can do this by making the change of variables z = (x - p)/a. The result 

is (Problem 21) 

(8.6) 	
f(x)=!Ø(z), 	

where z= 
a 

The functions (z) and () for sometimes (z) - are tabulated SO YOU can use 
either tables or computer to do problems. 

Example 3. Find the number r such that the area under the normal distribution curve 
y= f(x) from p - r to p + r is equal to 1/2. 

Look at Figure 8.1 and recall that the area from - to c is 1 and that th 
graph is symmetric about a: = p. Then the integral from —oc to p - r and the 
integral from p + r to oc are equal to each other and so each is equal to 1/4. Thu,  
the integral from —oc to p + r must he 3/4, that is F(p + -r) = 3/4. By () this 
is (z) = 3/4 where z = (p + r - p)/a = nc. By computer or tables we find that 
if (z) = 3/4, then a: = 0.6745. Thus r = 0.6745a. 

Example 4. You have taken a test (academic like the SAT, or medical like a bone density 
test) and a report gives your z-score as 1.14. What percent of your peers scored 
higher than you? 

If we call the actual test scores x, and their average is p and standard deviation a. 
then the term z-score means the value of z = (x—p)/c as in (8.6). (In words, the a:-
score is the difference between a: and its average, measured in units of the standard 
deviation.) Now we want the area I - F(x) = 1 - (z) by (8.6). By computer (or 
tables) we find (1.14) = 0.87; then 1 —0.87 = 0.13. so 13% of your peers scored 
higher than you. If your z-score is negative, then you are below average--had if 
it's a physics test, good if it's your cholesterol! For example, if z = —0.25. then 

(z) = 0.40. so 60% of your peers scored higher than you. 

Example 5. Suppose that boxes of a certain kind of cereal have an average weight of 16 
ounces and it is known that 70% of the boxes weigh within 1 ounce of the average. 
What is the probability that the box you buy weighs less than 14 ounces? 

If a: represents the weight of a box, then we are given that the probability of 
15 < a: < 17 is 0.7. Assuming a normal distribution, the area under the f(x) curve 
up to a: = p = 16 is 1 and the area from  = 16 to  = 17 is half of 0.7 (by symmetry: 
see Figure 8.1). Thus F(17) = 0.5 + 0.35 = 0.85. We want to find the probability 
that a: < 14; this is F(14). Using (8.6), a: = 17 gives z = (17 - 16)/a = 1/a, and 
similarly a: = 14 gives z = —2/a. So we are given (1/a) = 0.85, and we want 
to find 4(_2/a). By computer (or tables) we find that if 4(1/a) = 0.85, then 
1/a = 1.0364, so 2/a = 2.0728. and (-2/a) = 0.019. So there is almost a 2 
chance that we would get a box weighing less than 14 ounces. 

Note that in Examples 4 and 5 we assumed a normal distribution with no obvious 
justification. It is a very interesting and useful fact that such an assumption is 

Show that if  = - 
for a: and n - 
(ignore the squ 
that 

and a similar fore 
of /(np), collect 

in 

I-knee 
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1. Verify that for a random variable x with normal density function 1(x)  as in (8.1). 
the mean value of x is p . the standard deviation is o•, and the integral of f(x) from 
—00 to no is 1 as it must be for a probability function. Hint: Write and evaluate 
the integrals f 	f(x) dx. f° xf(x) dx, f(x - z) 2f(x) dx. See equations (6.2), 

00 

(6.3), and (6.4). 

2. Do Problem 6.4 by comparing e 2  with f(x) in (8.1). 

3. The probability density function for the x component of the velocity of a molecule 
of an ideal gas is proportional to e_m2 /(2kT) where v is the x component of the 
velocity, rn is the mass of the molecule, T is the temperature of the gas and k is 
the Boltzmann constant. By comparing this with (8.1), find the mean and standard 
deviation of v, and write the probability density function f(v). 

4. Computer plot on the same axes the normal probability density functions with p = 0, 
a = 1, and with p = 3, a = I to note that they are identical except for a translation. 

5. Computer plot on the same axes the normal density functions with p = 0 and a = 1, 
2, and 5. Label each curve with its a. 

6. Do Problem 5 for a = , , 1. 

7. By computer find the value of the normal cumulative distribution function at p + a, 
p + 2a, p + 3c, and satisfy yourself that these are independent of your choices for 
p and a. Find the probabilities that x is within 1, 2, or 3 standard deviations of 
its mean value p to verify the results stated in the paragraph following (82). Hint: 
See Figure (8.1). The probability that x is within I standard deviation of its mean 
value is the area from p—a top +or; this is twice the area from p to p+a. Subtract 

(that is the area from —no to p) from your value of F(p + a) and then double the 
result. 
it 

8. Carry through the following details of a derivation of (8.3). Start with (7.3); we want 
an approximation to (7.3) for large n. First approximate the factorials in C(n,x) 
by Stirling's formula (Chapter 11, Section 11) and simplify to get 

	

(1p) 0( nq '\'/ 	n
1(x) 	x 	n — x) 	V2xx(n—x) 

Show that if 6 = x—np, then x = np+ö and n—x = nq—ö. Make these substitutions 
for x and n — x in the approximate 1(x). To evaluate the first two factors in f(x) 
(ignore the square root for now): Take the logarithm of the first two factors; show 
that 

LP In =—ln(1±-- 
X 	\ flp 

and a similar formula for ln[nq/(n — r)]; expand the logarithms in a series of powers 
of 6/(np), collect terms and simplify to get 

/ 	 \ 	
( +powersof'\. ln(!I (J±2_) 

fl 

	

X J ii — x 	2npq 
1 	

n.j 

Hence 	
(\\ 	)n-x52/(inpq) 

x n—x 
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THE POISSON DISTRI for large n. [We really want 5/n small, that is, x near enough to its average value nj  
so that 5/n = (x - np)/n is small. This means that our approximation is valid for 	( The Poisson distribut 
the central part of the graph (see Figures 7.1 to 7.3) around x = np where f(x) of some occurrence is 
large. Since f(x) is negligibly small anyway for x far from rip, we ignore the far' l 	is also a good approx 
that our approximation may not he good there. For more detail on this point.. S I 	np is small even thou 
Feller, p.  1921. 	Returning to the square root factor in f(x), approximate x by n;  

Let's derive the F and n -  x by nq (assuming S <np or nq) and obtain (8.3). 
Suppose we observe a  

9.  Computer plot a graph like Figure 8.3 of the binomial distribution with n = I( radioactive substance 
p= 	, and observe that you have practically the corresponding normal approxiim- the half-life of the sni 
tion. during the experimen 

10.  Computer plot graphs like Figure 8.2 but with p 	to see that as n increases. 
small time interval 	t 
of two particles duri normal approximation becomes good (at least in the region around x = it where 
observing exactly n c the probabilities are large) even though the binomial graph is not symmetric 

Figure 7.3). 	 . the probability of o 
. the sum of the probat  

As in Examples 1 and 2, use (a) the binomial distribution: (b) the corresponding norma. none in At" and 	- 
approximation, to find the probabilities of each of the following: 

11.  Exactly 50 heads in 100 tosses of a coin. 
 

Now P, (At) is the pr 
12.  Exactly 120 aces in 720 tosses of a die. 

Then the probability 

13.  Between 100 and 140 aces in 720 tosses of a die. these values into 19.1 

14.  Between 499,000 and 501,000 heads in 106  tosses of a coin. . (9.2) pllr 

15.  Exactly 195 tails in 400 tosses of a coin. or, 

16.  Between 195 and 205 tails in 400 tosses of a coin. F 	 F 
(9.3) 

17.  Exactly 31 4's in 180 tosses of a die. 

18.  Between 29 and 33 4's in 180 tosses of a die. 1tting At 	0. we bA 

19.  Exactly 21 successes in 100 Bernoulli trials with probability 	of success. (94) 

20.  Between 17 and 21 successes in 100 Bernoulli trials with probability . of success 
or n = 0. (9.1) stm 

21.  Verify equations (8.6). Hints: In F(x), let u = (t -y)/a; note that dt = adu. What rticles in at." and 
is u when t = -oc? When t = x? Remember that by definition z = (.r - 

22. Using (8.6), do Problem 7. 	 j(9.5) 

23. Using (8.6), find h such that 90% of the area under a normal f(x) lies between p.- 	 flien, since P0(0) 
and it + Ii. Repeat for 95%. Hint: See Example 3. 	

1bterval" = 1. integrat. 

24. Write out a proof of Chebyshev's inequality (see end of Section 7) for the case of z. 
continuous probability function f(r). 	 49.6) 

25. An instructor who grades 'on the curve" computes the mean and standard deviatiur.4 	Substituting (9.6) into 
of the grades, and then, assuming a normal distribution with this p and r, sets th 	 wlution (Problem 1) 
border lines between the grades at: C from p -to p + r, B from p + 	 f I. P3, •, P,,. we obt 
p +A from p + c up, etc. Find the percentages of the students receiving 
the various grades. Where should the border lines be set to give the percentage:- 	

7 A and F, 10%: B and D, 20%; C, 40%? 
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THE POISSON DISTRIBUTION 

The Poisson distribution is useful in a variety of problems in which the probability 
of some occurrence is small and constant. (See Example 1 and Problems 3 to 9.) It 
is also a good approximation to the binomial distribution when p is so small that 
np is small even though n is large (see Example 2). 

Let's derive the Poisson distribution by considering the following experiment. 
Suppose we observe and count the number of particles emitted per unit time by a 
radioactive substance. We assume that our period of observation is much less than 
the half-life of the substance, so that the average counting rate does not decrease 
during the experiment. Then the probability that one particle is emitted during a 
small time interval At is pAt, p. =const., if At is short enough so that the probability 
of two particles during At is negligible. We want to find the probability P, (t) of 
observing exactly n counts during a time interval t. The probability P(t + At) is 
the probability of observing n counts in the time interval t + At. For n > 0, this is 
the sum of the probabilities of the two mutually exclusive events, "n particles in t, 
none in At" and "(n - 1) particles in t, one in At"; in symbols. 

(9.1) 	 P, (t + At) = P1 (t)Po(At) + P_ j (t)P1(At). 

Now P1  (At) is the probability of one particle in At; this, by assumption, is pAt. 
Then the probability of no particles in At is 1 - P1  (At) = 1 - pAt. Substituting 
these values into (9.1). we get 

(9.2) 	 P" (t + At) = P(t)(1 - pAt) + P_1(t)pAt. 

or, 

(93) 	
PU (t + At) - P(t) 

= pP_1(t) - pP(t). 
At 

Letting At - 0, we have 

(9.4) 	
dP(t) 	

pP7 _ i (t) - pP(t). 
dt 

For n = 0, (9.1) simplifies since the only possible event is "no particles in t, no 
particles in At," and (9.4) becomes. for ii = 

(9.5) 	
dPo(t) 

= —pP0(t). 
dt 

Then, since P0(0) = 'probability that no particle is emitted during a zero time 
interval" = 1, integration of (9.5) gives 

(9.6) 	 P0 = e. 

Substituting (9.6) into (9.4) with n = 1 gives a differential equation for P1(t); its 
solution (Problem 1) is P, (t) = Ate—"'. Solving (9.4) successively (Problem 1) for 
P2, F3, . ., P, we obtain 

At (9.7) 	 P(t) = 
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Putting t = 1, we get for the probability of exactly n counts per unit time 

(9.9) 

(9.8) 	 Pn  = e. 	Poisson distribution 

The probability density function (9.8) is called the Poisson distribution or the Pois-
son probability density function. You can show (Problem 2) that for the random 
variable n, the mean (that is the average number of counts per unit time) is p, and 
the variance is also p so the standard deviation is ,VI L 

Example 1. The number of particles emitted each minute by a radioactive source is 
recorded for a period of 10 hours; a total of 1800 counts are registered. During 
how many 1-minute intervals should wexpect to observe no particles; exactly one: 
etc.? 

The average number of counts per minute is 1800/(10.60) = 3 counts per minute: 
this is the value of p. Then by (9.8), the probability of n counts per minute is 

A graph of this probability function is shown in Figure 9.1. For n = 0, we find 
Po  = 	= 0.05; then we should expect to observe no particles in about 5% of 
the 600 1-minute intervals, that is, during 30 1-minute intervals. Similarly we could 
compute the expected number of 1-minute intervals during which 1, 2. ..., particles 
would be observed. 

Figure 9.1 Poisson distribution p =3. 

Poisson Approximation of the Binomial Distribution In Section 8, we dis-
cussed the fact that the binomial distribution can be approximated by the normal 
distribution for large n and large np. If p is very small so that up is very much less 
than n (say, for example, p = 10 3, n = 2000, np = 2), the normal approximation 
is not good. In this case you can show (Problem 10) that the Poisson distribution 
gives a good approximation to the binomial distribution (7.3), that is. that 

[The exact meaning 
proaches 1 as n 

le 2. If 1500 people 
the probability that 2 

The answer is give 
x = 2. This is 

C n. z 

(Or from your compu 
p= 1/500,x = 2. is  
the Poisson appraxm 
0.2240. (Or from yo 
p = 3, x = 2. is 0.22 
the same axes the bin  
distribution with p = 
(Problem 12). 

Approximations b 
distributions can be 
are both large. and i 
Poisson distribution i 
distribution as in 

(9.10) 

Note that the normal 
Poisson distribution: 
variance). It is useft 
distribution and thesi 

BLEMS, SECTION 9 
1. Solve the sequen 

in (9.5) and 96 

2. Show that the a 
the Poisson dr 
deviation of the 
differentiate it 
differentiate the 
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per unit time ____ r 	
•-- 	 ____ - 	 -V  

it 

(n )e' 
(9.9) 	C(n,z)pxq?2- 

	
, 	Large a, small p. 

' V  [The exact meaning of (9.9) is that, for any fixed x, the ratio of the two sides ap- 
V 

nstributzon or the Prn.s-  
proaches 1 as ri - oo and p 	0 with np remaining constant.] 

' that for the random 
er unit time) is j. and Ex ample 2. 	If 1500 people each select a number at random between 1 and 500, what is 

the probability that 2 people selected the number 29? 
The answer is given by the binomial distribution (7.3) with ri = 1500, p = 1/500, 

radioactive source is  
x=2. This is 

are registered. During V_____ - 	1500! ( 1 	'499\998  
C(n,x)p q 	- 	 = 0.2241. 

Particles; exactly one; 	_____ 2!1498! 

= 3 counts per minute -,  (Or from your computer: the binomial probability density function with n = 1500, 

unts per minute is p = 1/500, x = 2. is 0.2241 to four decimal places.). A simpler formula from (9.9) is 
the Poisson approximation with j. = rip = 3, x = 2, namely 	e_'/x! = 32e 2 /2! = 
0.2240. 	(Or from your computer, the Poisson probability density function with 

3, x = 2, is 0.2240 to four decimal places.) It is interesting to computer plot on 

For ii 	0, we find 
the same axes the binomial distribution with ri = 1500, p = 1/500, and the Poisson 
distribution with ju = 3 as in Figure 9.1 to discover that they are almost identical V  

rtides in about 5% of  (Problem 12). 
&6. Similarly we could 
bAch 1. 2, ..., particles  

Approximations by the Normal Distribution 	We have commented that many 
distributions can be approximated by the normal distribution when n and A = np 
are both large, and have shown this for the binomial distribution in (8.1). 	The 
Poisson distribution when p is large is also fairly well approximated by the normal 
distribution as in (9.10). 

(9 10) 	
LXe_I4 	1 

e-
(x-)2/(2) 	a large. 

X 

Note that the normal distribution in (9.10) has the same mean and variance as the 
Poisson distribution it is approximating (see Problem 2 for the Poisson mean and 
variance). It is useful to computer plot on the same axes graphs of the Poisson 
distribution and their normal approximations (Problem 13). 

10 

3. 	 _ 	PROBLEMS, SECTION 9 

1. Solve the sequence of differential equations (9.4) for successive n values [as started 

	

In Section 8, we dis- 	V: 	 in (9.5) and (9.6)] to obtain (9.7). 

	

mated by the normal 	
V 

	

np is very much less 	
2. Show that the average value of a random variable n whose probability function is 

	

rmal approximation 	
the Poisson distribution (9.8) is the number t in (9.8). Also show that the standard 
deviation of the random variable is 	Hint: Write the infinite series for ex, 

	

Poisson distribution 	 differentiate it and multiply by x to get xeV = >(nx'/n!); put x = j. To find 2 

that is, that 	
V 	

differentiate the xeX series again, etc. 
VV 
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3. In an alpha-particle counting experiment the number of alpha particles is recorded Estimate of Popu 
each minute for 50 hours. 	The total number of particles is 6000. 	In how many median of our meu 
1-minute intervals would you expect no particles? Exactly n particles, for n = 1 2. and smaller measuns 
3, 4, 5? Plot the Poisson distribution. times. that is the UX 

4. Suppose you receive an average of 4 phone calls per day. What is the probability of i is, however, the 
that on a given day you receive no phone calls? Just one call? Exactly 4 calls? sample mean 7.= 1' 

5. Suppose that you have 5 exams during the 5 days of exam week. Find the probability  
that on a given day you have no exams; just 1 exam: 2 exams: 3 exams. 

8. 	If you receive, on the average, 5 email messages per day. in how many days out (10.1) 
of a 365-day year would you expect to receive exactly 5 messages? Fewer thaii 
Exactly 10? More than 10?4ust 1? None at all?  

7. In a club with 500 members, what is the probability that exactly two people have 
birthdays on July 4? For a large set of me 

1cm 1). Assuming th 
8. If there are 1 00 misprints in a magazine of 40 pages, on how many pages would yOU 	I density function fi z 

expect to find no misprints? Two misprints? Five misprints? 
to show (Problem 2) 

9. If there are, on the average, 7 defects in a new car, what is the probability that your I 	of Y is c/,/. Now( 
new car has only 2 defects? That it has 6 or 7? That it has more than 10? variable is unlikely U 

10. Derive equation (9.9) as follows: In C(n, x), show that n!/(n - x)! 	n' for fixed .r deviations. For our 
and large n [write n!/(n - x)! as a product of x factors, divide by nx,  and show that than a few multiples i 
the limit is I as n -+ m]. Then write q' 	= (1 - p)" 	as (1 - pï(l - p) an increasingly good 
(1— np/n)"(l — p): evaluate the limit of the first factor as n -+ no, np fixed: the I 	Note that this just S 
limit of the second factor as p .- 0 is 1. Collect your results to obtain equation (9.9). that the average of, 

11. Suppose 520 people each have a shuffled deck of cards and draw one card from than the average of 
the deck. What is the probability that exactly 13 of the 520 cards will be aces of be too large, but its 
spades? Write the binomial formula and approximate it. Which is best, the normal 
or the Poisson approximation? Although you only need values at one x to answer 

Estimate of Populi the question, you might like to computer plot on the same axes graphs of the three 
be s 	= (1/n) distributions for the given n and 	. i 	find the expected v.k 

12. Computer plot on the same axes graphs of the binomial distribution in Example 2 with mean p and v 
and the Poisson and normal approximations. I We conclude that a r 

13. Computer plot on the same axes a graph of the Poisson distribution and the corre- 
sponding normal approximation for the cases ju = 1, 5, 10, 20, 30. 

10. STATISTICS AND EXPERIMENTAL MEASUREMENTS (10.2) 

Statistics uses probability theory to consider sets of data and draw reasonable con- 
clusions from them. So far in this chapter. we have been discussing problems for 
which we could write down a density function formula (normal. Poisson, etc.). (Caution: The term 
Suppose that, instead, we have only a table of data, say a set of laboratory mea- ence books, compute 
surements of some physical quantity. Presumably, if we spent more time, we could check the definition 
enlarge this table of data as much as we liked. We can then imagine an infinite term.) 
set of measurements of which we have only a sample. The infinite set is called the The quantity a w 
parent population or universe. What we would really like to know is the probability parent population wI 
function for the parent population, or at least the average value It (often thought of measurement x. The 
as the "true" value of the quantity being measured) and the standard deviation or of the different possible 
the parent population. We must content ourselves with the best estimates we can the value we are ap 
make of these quantities using our available sample, that is. the set of measurements roughly the spread o 
which we have made. measurement. it is of 
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l? Exactly 4 calls? 

k. Find the probability 
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e probability that your 
more than 10? 

r for fixed r 
by nz.  and show that 

; (1 - p)"(l - p) = 
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Estimate of Population Average As a quick estimate of p we might take the 
median of our measurements x (a value such that there are equal numbers of larger 
and smaller measurements), or the mode (the measurement we obtained the most 
times, that is the most probable measurement). The most frequently used estimate 
of ,u is, however, the arithmetic mean (or average) of the measurements, that is the 
sample mean T = (1/n) 	x. Thus we have 

(10.1) 	Estimate of population mean is ji 	= (1/n) Ex 

For a large set of measurements we can justify this choice as follows (also see Prob-
lem 1). Assuming that the parent population for our measurements has probability 
density function f(x) with expected value j and standard deviation a. it is easy 
to show (Problem 2) that the expected value of Y is .t and the standard deviation 
of Yr is 	Now Chebyshev's inequality (end of Section 7) says that a random 
variable is unlikely to differ from its expected value by more than a few standard 
deviations. For our problem this says that Y is unlikely to differ from ,u by more 
than a few multiples of a//7, which becomes small as n increases. Thus Y becomes 
an increasingly good estimate of ,u as we increase the number n of measurements. 
Note that this just says mathematically what you would assume from experience, 
that the average of a large number of measurements is more likely to be accurate 
than the average of a small number. For example, two measurements might both 
be too large, but it's unlikely that 20 would all be too large. 

Estimate of Population Variance Our first guess for an estimate of a2  might 
be 2 = (1/n)t.1(x _)2, but we would be wrong. To see what is reasonable, we 
find the expected value of s2  assuming that our measurements are from a population 
with mean 1L and variance 0.2. The result is (Problem 3), E(s2) = [(n - 1)/n]c2. 
We conclude that a reasonable estimate of a2  is 

(10.2) 	Estimate of population variance is a2  ._.!_ 	._ 

raw reasonable con-
ussing problems for 
mal, Poisson, etc.). 
of laboratory mea-

nore time, we could 
Imagine an infinite 
iite set is called the 
w is the probability 
ju (often thought of 
idard deviation a of 
it estimates we can 
et of measurements 

I ,  
(Caution: The term "sample variance" is used in various references—texts, refer-
ence books, computer programs--to mean either our 2  or our estimate of 2,  so 
check the definition carefully in any reference you use. We shall avoid using the 
term.) 

The quantity 7 which we have just estimated is the standard deviation for the 
parent population whose probability function we call f(x). Consider just a single 
measurement x. The function f(x) (if we knew it) would give us the probabilities of 

I 

	

	
the different possible values of x, the population mean Y would tell us approximately 
the value we are apt to find for x, and the standard deviation a would tell us 
roughly the spread of x values about p. Since a tells us something about a single 
measurement. it is often called the standard deviation of a single measurement. 
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Standard Deviation of the Mean; Standard Error Instead of a single mea-
surement, let us consider Y, the average (mean) of a set of ii measurements. (The 
mean, Y, will be what we will use or report as the result of an experiment.) Just as 
we originally imagined obtaining the probability function 1(x) by making a large 
number of single measurements, so we can imagine obtaining a probability function 
g() by making a large number of sets of n measurements with each set giving us 
a value of Y. The function g() (if we knew it) would give us the probability of 
different values of Y. We have seen (Problem 2) that Var() = o 2/n, so the standard 
deviation of the mean (that is, of ) is 

(103) 'm = i/Var() = T. 

The quantity am  is also called the standard error; it gives us an estimate of the 
spread of values of 7 about ji. We see that the new probability function g() must 
be much more peaked than f(x) about the value i because the standard deviation 
a/v/h is much smaller than ci. Collecting formulas (10.2) and (10.3), we have 

(104) 
 

V n(n-1) 

Example I. To illustrate our discussion, let's consider the following set of measurements: 
17.2, 7.1, 6.7, 7.0. 6.8, 7.0, 6.9, 7.4, 7.0, 6.9). [Note that, to show methods but 
minimize computation, we consider unrealistically small sets of measurements.[ 

1 10 	
70

From (10.1) we find z= 	= 	= 7.0. 
0 	10 

i= 1 

10 

From (10.2) we find o 	(x - 7)2 = 	= 0.04,o 0.2. 
i= 1 

ro 

	

From (10.4), the standard error is cim  =V 	= 0.0632. 

Combination of Measurements We have discussed how we can use a set of 
measurements xi to estimate ji (the population average) by (the sample average 
and to estimate the standard error OmX = Var() [equation (10.4)]. Now suppose 
we have done this for two quantities, x and y, and we want to use a known formula 
w = w(x, y) to estimate a value for w and the standard error in w. First we consider 
the simple example w = x + y. Then, by Problem 6.13, 

(10.5) 	 E(w) = E(x) + E(y) = p. + jz, 

where p and iii,  are population averages. As discussed above, we estimate p 
and a, by Y and V and conclude that a reasonable estimate of w is 

(10.6) 

Section 10 

Now let us assume t 
Problem 6.15, 

(10.7) 

Next consider the  
find 121 = 4-27+31  
Var(Kx) = K 2  Var(: 

	

(10.8) 	Var( 

(10.9) 

We can now see I 
be approximated by i 
namely (see Chapter. 

	

(10.10) 	w(x. 

where the partial derii 
[Practically speaking, 
near zero—we can't e 
the higher derivatives 
point (A., Ay ).] Am= 
derivatives are constai 

	

(10.11) 	E[w(z.y 

Since we have agreed t 
able estimate of w is 

(10.12) 

(This may look obviou 
Then, putting x = 

(10.11), we find as in ( 

Var(ü1) 

13) 

can use (10.12) and 
sured quantities .r i 
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-ff 

r Instead of a single m 	 Now let us assume that x and y are independently measured quantities Then by 
of n measurements (T). 	Problem 6.15, 

of an experiment.) Just ag 
u 1(x) by making a 	

Var(Y) = Var() + Var(V) = 	+ 

Ding a probability functjo) 	
(10.7) 	 /.2 + a2 

s with each set giving 	
mw v mx 	my

, 
 

give us the probability at 	 Next consider the case w = 4 - 2x + 3y As in equations (10.5) and (10 6) we 
F) = c2/n, 80 the standard,%, 	find ii = 4 - 2 + 3V Now by Problem 5.13, we have Var(x + K) = Var(x), and 

Var(Kx) = K 2 Var(x), where K is a constant. Thus, 

(10.8) 	Var()=Var(4-2+3)'V&(2+3V) 
2 (_2)2 Var() + (3)2 Var() = 4a 	+ 90r2 

(10.9) 	 = 	[4a 	~ 9cr2 my 

us an estimate of the  We can now see how to find Tand crmw for any function w(x, y) which can 
bility function g() must be approximated by the linear terms of its Taylor series about the point 
le the standard deviation namely (see Chapter 4, Section 2) 
and (10.3), we have  Ow 

(10.10) 	 Ox , 

where the partial derivatives are evaluated at x = ,i, y = 	and so are constants. 
[Practically speaking, this means that the first partial derivatives should not be 
near zero—we can't expect good results near a maximum or minimum of w—and 
the higher derivatives should not be large, that is, w should be "smooth" near the 

point 	/2).1 Assuming (10.10), and remembering that 	and the partial 
n set of measurements: derivatives are constants, we find 

to show methods but 
Z of measurements.] 

-. 

(10.11) 	E[w(x, )] 	w( 	 w)  
+ () [E(x) - /.ix] 

+ 
(Lw) [E(y) - 

Since we have agreed to estimate p and a1, by Y and 	, we conclude that a reason- 

0.04, a 	0.2. 
able estimate of w is 

(10.12) 

0.0632. (This may look obvious, but see Problem 7.) 
Then, putting x = 7, y = 	in (10.10) an4emembering the comment just before 

(10.11), we find as in (10.8) 
w we can use a set of 

(the sample average) Var() = Var[w(, v)1 
(10.4)1. Now suppose 

Var [w(z 	i11 ) + ()( 	- i) + (Ow
)( 	liv)] 

use a known formula 49X cly 

o w. First we consider  2 2,7, , 

(,9W)

2  

rnx a 
0

my, 

ve, we estimate 	x 

2 Ow 	
a2 + (10.13) 	 amw = 

	(,)20,2 
 

Ox 	" 	 my 

f 
We can use (10.12) and (10.13) to estimate the value of a given function w of two 
measured quantities x and y and to find the standard error in w. 
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Example 2. From Example 1 we have 7 = 7 and o = 0.0632. Suppose we have also 	 "average" Ms 
found from measurements that = 5 and o = 0.0591. If w = x/y. find 1P and 	 median or nwd 

amw. From (10.12) we have Uj = 	= 7/5 = 1.4. From (10.13) we find 	 S 	 2. Let xi . x2 , 
expected value 

= 	

+ (--7)%,2 " ~(1)'(0.0632)22 	+ (-7)2(0059l)2 	
that 

CMIL,
y 	 25 	 3. Define s by the  

= 0.0208. 	 of 82 is [In - I) 

Central Limit Theorem So far we have not assumed any special form (such 	1 
as normal, etc.) for the density function f(s) of the parent population, so that 
our results for computation of approximate values of p, a, and a,, from a set of Find the aver 
measurements apply whether or not the parent distribution is normal. 	(And, in value of the tLj 
fact, it may not be; for example. Poisson distributions are quite common.) 	You term write 
will find, however, that most discussions of experimental errors are based on an 
assumed normal distribution. 	Let us discuss the justification for this. 	We have 

 seen above that we can think of the sample average Y as a random variable with 
average p and standard deviation a//. We have said that we might think of a Show by Prole 
density function g() for Y and that it would be more strongly peaked about p than 
the density function f(s) for a single measurement, but we have not said anything 
so far about the form of g(). There is a basic theorem in probability (which we and evaluate El 
shall quote without proof) which gives us some information about the probability 
function for Y. 	The central limit theorem says that no matter what the parent 
probability function f(s) is (provided It and o• exist), the probability function for 

is approximately the normal distribution with standard deviation a/,/ 	if n is 
. 	 a zi 

large. 
, 	 for a 959 	ha, 

interval is 
Confidence Intervals, Probable Error 	If we assume that the probability func- and 8.23. 
tion for Y is normal (a reasonable assumption if ri is large), then we can give a more 5. Show that if 
specific meaning to am (standard deviation of the mean) than our vague statement relative error 
that it gives us an estimate of the spread of Y values about p. Since the probability 
for a normally distributed random variable to have values between p - a and p + cr 
is 0.6827 (see Section 8 and Problem 8.7), we can say that the probability is about 
68% for a measurement of Y to lie between p - am and it + am. This interval is 6. By expanding w 

called the 68% confidence interval. 	Similarly we can find an interval p ± r such 
that the probability is 1 that a new measurement would fall in this interval (and 
so also the probability is 	that it would fall outside!), that is, a 50% confidence 
interval. From Section 8. Example 3. this is r = 0.6745am. The number r is called 
the probable error. When we have found Cm as in Examples 1 and 2, we just have 7. Equation (10.12 

to multiply it by 0.6745 to find the corresponding probable error. Similarly we can ever, that if you  

find the error corresponding to other choices of confidence interval (see Problem 4). 

PROBLEMS, SECTION 10 
8. The following m 

1. Let m, 1fl2,''' . in,, be a set of measurements, and define the values of xi by x  
m - a, z2 = m2 - a. 	, s,, = Mn - a, where a is some number (as yet unspecified. 	 S 
but the same for all xi ). Show that in order to minimize i:' 4. we should choose 	 p 
a = (1/n) 	rn. Hint: Differentiate En 4 with respect to a. You have shown 
that the arithmetic mean is the "best" average in the least squares sense, that is. 	 Find the mean 

Hint: See ExarnT that if the sum of the squares of the deviations of the measurements from their  
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l. Suppose we have a1so( 	 "average" is a minimum, the "average" is the arithmetic mean (rather than, say, the 

	

UT and 	median or mode) 

013) we find  
4 	 2. Let ri, x2. 	, X. be independent random variables, each with density function f(x), 

2 	 _______ 	

expected value p. and variance 12. Define the sample mean by = 	x. Show 

	

f 7\ 	 a 	 that E() = p, and Var() = a2/n. (See Problems 5.9, 5.13, and 6.15.) 
+ 
- 

(0.091)2 
25 i 	 1 	3. Define s by the equation 52 = (1/n) E1( 

- )2, Show that the expected value 
Of 2 is [(n - 1)/n] 2. Hints: Write 

(x - 	)2 
= 	( 	

_ ,U)12 

any special form 	(siith  
= (x -p)2 - 2(x - p)( 	- p) + ( 	

- p)2. 
ent population, so that, 

o and 	from a set of  L......... Find the average value of the first term from the definition of 	2 and the average 
31 is normal. 	(And, in value of the third term from Problem 2. To find the average value of the middle 

quite common.) You term write  
errors are based on 
tion for this. 	We have  (_ 	) 	

Xi+X2+"±Xr, 	'\ ( 	_P) = ![(xi - p)+ (x2 —p)+ 	+(x - 
a random variable with _______ 

tat we might think of a Show by Problem 6.14 that 
tly peaked about p than  
have not said anything E[(x1 - 	 - p)J = E(x - p)E(x - p) = 0 	for i 

probability (which we and evaluate E[(x1 - 4)2} (same as the first term). Collect terms to find 
a about the probability 
iatter what the parent = E(s2) 	

n—i a2.  
_____ 

probability function for 
deviation 	/ 	if n is  4.  Assuming a normal distribution, find the limits p ± h for a 90% confidence interval; 

for a 95% confidence interval; for a 99% confidence interval. What percent confidence 
interval is p ± 1.3a? 	Hints: See Section 8, Example 3, and Problems 8.7, 8.22, 

at the probability func- 	______ 
and 8.23. 

hen we can give a more  5.  Show that if w = xy or w = x/y, then (10.14) gives the convenient formula for 
in our vague statement relative error  

Since the probability  f2 
tween p - a and p + a + 

()2. 

 W 	

X_) 

be probability is about 	J 
+ am . This interval is 	, 6.  By expanding w(x, y. z) in a three-variable power series similar to (10.10), show that 

an interval p ±,r such  
2 2 

J1 in this interval (and 	_____ 

(Ow 
 r2 + 	r + 	rr= ~(_' az t is. a 50% confidencee 49Y 

The number r is called  
7.  Equation (10.12) is only an approximation (but usually satisfactory). Show, how- 

1 and 2. we just have 	. ever. that if you keep the second order terms in (.10). then 
rror. Similarly we can 
terval (see Problem 4). 	

. 

02w'\
UT 

 
() + 	2 

+ 1 

'OW 

8.  The following measurements of x and y have been made. 
Lime values of xi by x 	= 

aber (as yet unspecified. x :5.1,4.9.5.0,5.2.4.9.5.0,4.8,5.1 
'I  

, 	
x,2. we should choose y: 1.03, 1.05,0.96, 1.00, 1.02.0.95,0.99, 1.01. 1.00,0.99 

A to a. You have shown 
squares sense, that is, Find the mean value and the probable error of x, y, z + y, xy. x3 sin y. and In x. 

surements from their Hint: See Examples 1 and 2 and the last paragraph of this section. 


