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Synoptic Meteorology II: The Q-Vector Form of the Omega Equation 

3-5 March 2015 

Readings: Section 2.3 of Midlatitude Synoptic Meteorology. 

Motivation: Why Do We Need Another Omega Equation? 

The quasi-geostrophic omega equation is an excellent diagnostic tool and has served as the one 
of the foundations for introductory synoptic-scale weather analysis for fifty or more years. 
However, it is not an infallible tool. Rather, it has two primary shortcomings: 

• The two primary forcing terms in the quasi-geostrophic omega equation, the differential 
geostrophic vorticity advection and Laplacian of the potential temperature advection 
terms, often have different signs from one another. Without computing the actual 
magnitude of each term, it is difficult if not impossible to assess which one is larger (and 
thus exerts a primary control upon the synoptic-scale vertical motion). 

• The quasi-geostrophic omega equation is sensitive to the reference frame – stationary or 
moving with the flow – in which it is computed. In other words, different results are 
obtained if the reference frame is changed, even if the meteorological features are the 
same! This is not a primary concern for us in this class, however, as we are primarily 
considering stationary reference frames (e.g., as depicted on standard weather charts). 

These shortcomings motivate a desire to obtain a new equation for synoptic-scale vertical 
motions that does not have these problems. This equation, known as the Q-vector form of the 
quasi-geostrophic omega equation, is derived below. 

 

Obtaining The Q-Vector Form of the Quasi-Geostrophic Omega Equation 

To obtain the Q-vector form of the quasi-geostrophic omega equation, rather than start with the 
quasi-geostrophic vorticity and thermodynamic equations, we will start with the quasi-
geostrophic horizontal momentum and thermodynamic equations. For simplicity, we will assume 
that the Coriolis parameter f is constant, i.e., f = f0, such that all terms involving β, the meridional 
variability in f, are zero. We will also neglect diabatic heating.  

Thus, our basic equation set is given by: 
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First, find p*∂/∂p of (1): 
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Next, find R/f0*∂/∂y of (3): 
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We need to utilize the chain rule on the second and third partial derivatives on the left-hand sides 
of both (4) and (5). Where applicable, we also wish to commute (or change the order of) the 
partial derivatives; note that this applies all terms on the left-hand sides of (4) and (5). This 
enables us to write as many terms as possible in terms of ∂ug/∂p and ∂T/∂y. The reasons for doing 
so will become clear shortly. 

Apply the chain rule, commute the partial derivatives as applicable, and compute (4) – (5), 
grouping like terms where possible to obtain: 
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For further simplification, recall the thermal wind relationship, introduced in an earlier lecture: 
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Note that in (7), we have substituted f0 for f given that we are currently assuming that f = 
constant. By application of (7b) into (6), the first set of terms on the right-hand side of (6) goes 
away. This is why we rewrote the terms of (4) and (5) as described above – to make use of the 
thermal wind relationship to simplify the result! Likewise, we can apply both (7a) and (7b) to 
rewrite the second set of terms on the right-hand side of (6) in terms of R/f0. Doing so, we obtain: 
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Recall that, by definition, for f = constant, the divergence of the geostrophic wind is zero. This is 
equivalent to stating that: 
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If we substitute (9) into the first term on the right-hand side of (8), we find that it is equal to the 
second term on the right-hand side of (8). Likewise, it is apparent that the last two terms on the 
right-hand side of (8) are equivalent. Thus, 
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Finally, noting that Sp = σp/R, if we substitute for Sp, divide (10) by p, and then multiply by f0, 
we obtain: 
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In (11), note that: 









∇⋅

∂
∂

−= T
yp

RQ gv
2  (12) 

 
Such that: 
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Now, we wish to find p*∂/∂p of (2): 
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Next, find R/f0*∂/∂x of (3): 
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As before, apply the chain rule, commute the partial derivatives as applicable, and compute (14) 
+ (15), grouping like terms where possible to obtain: 
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By application of (7a), the first set of terms on the right-hand side of (16) goes away. Likewise, 
application of (7a) and (7b) allows us to rewrite the second set of terms on the right-hand side of 
(16) in terms of R/f0. Doing so, we obtain: 
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By application of (9), the first term on the right-hand side of (17) is equal to the second term on 
the right-hand side of (17). Note also that the last two terms on the right-hand side of (17) are 
also equal to one another. Simplifying (17) with this while also substituting for Sp, dividing by p, 
and multiplying by f0, we obtain:  
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In (18), note that: 
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Such that: 
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Equations (13) and (20) contain forcing terms related to both the vertical motion ω and 
ageostrophic wind vag. We wish to eliminate the latter. We do so by computing ∂/∂x of (20) + 
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∂/∂y of (13). If we do so, commuting the derivatives on the ageostrophic wind terms in so doing, 
we obtain: 
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The last term on the left-hand side of (21), representing the divergence of the ageostrophic wind,  
can be substituted for by making use of the form of the continuity equation applicable in the 
quasi-geostrophic system, 
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Substituting (22) into (21) and simplifying the equation, we obtain: 
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Where Q = (Q1, Q2), with Q1 and Q2 as defined in (19) and (12), respectively. 

 

Basic Interpretation and Application of the Q-Vector Equation 

Equation (23) gives the Q-vector form of the quasi-geostrophic omega equation. The quasi-
geostrophic vertical motion is due entirely to Q-vector divergence (where ( )⋅∇  is the 
divergence operator), which we can readily compute and/or estimate. Unlike with the regular 
form of the quasi-geostrophic omega equation, there are not multiple forcing terms that may 
conflict with one another, a significant advantage! Likewise, there are no partial derivatives with 
respect to pressure, meaning that we only need data on one isobaric level to diagnose the vertical 
motion – another advantage! 

As with the regular form of the quasi-geostrophic omega equation, we apply this equation for the 
diagnosis of middle tropospheric vertical motions. Note, however, that we still do not actually 
‘solve’ for the vertical motion, given the second-order partial derivative operators on the left-
hand side of (23) that require iterative methods to solve, as previously described. 

The basic interpretation of (23) is straightforward. Recalling that ωω −∝∇2 , Q⋅∇∝ω . Thus, 

• Synoptic-scale ascent (ω < 0) is found where there is Q-vector convergence ( 0<⋅∇ Q ). 

• Synoptic-scale descent (ω > 0) is found where there is Q-vector divergence ( 0>⋅∇ Q ). 
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Without actually computing Q, its components (namely, the horizontal partial derivatives of vg 
and T), and its divergence, how can we best estimate Q and its divergence from a weather map? 
We utilize a minor coordinate transformation, into a coordinate system akin to a natural 
coordinate system, in order to aid in estimating Q and its divergence. 

Let us define the x-axis to be along, or parallel to, an isotherm, with warm air to the right of 
the positive x-axis. The y-axis is defined perpendicular to the x-axis. An idealized schematic of 
this is provided in Figure 1 below. 

 

Figure 1. Idealized depiction of the coordinate transformation described in the text above. 

This is akin to placing the x-axis along the direction in which the thermal wind blows, although it 
should be noted that we are only considering temperature on one isobaric level and not a layer-
mean temperature.  

In this coordinate system, ∂T/∂x, or the change in temperature along the isotherm, is inherently 
zero. Thus, the terms in the definitions of Q1 and Q2 in (19) and (12) above, respectively, that 
involve ∂T/∂x are 0. As a result, Q becomes: 
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If we make use of (9), we can rewrite the second term of (24), such that: 
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And, by vector identity, the term in the parentheses of (25) can be rewritten, such that: 
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Thus, to evaluate Q, we first want to find the vector change in vg along the isotherm. The k x () 
operator, geometrically, is manifest like the “right hand rule” and signifies a 90° clockwise 
rotation of the just-determined change vector. Next, we multiply this vector by the magnitude of 
∂T/∂y, or the magnitude of the temperature gradient. It is not explicitly necessary to multiply by 
R/p since, on an isobaric surface, both R and p are constant in space. If we follow this procedure 
at several locations on a weather map, we can estimate the divergence of Q and, thus, estimate at 
least the sign of the vertical motion. 

Let us now consider three examples of such application. As we do so, we will demonstrate how 
the same answer is given by the Q-vector analysis as would be obtained from the regular form of 
the quasi-geostrophic omega equation. 

Example 1: Idealized Trough/Ridge Pattern 

 

Figure 2. Q vectors (solid grey arrows) for an idealized trough/ridge pattern. Isotherms are 
depicted in black dashed lines, with cold air to the north, and streamlines depicting the 

geostrophic flow are depicted in solid green lines. 

In the vicinity of the areas of high pressure, the geostrophic wind is northerly along the positive 
x-axis (to the east) and southerly along the negative x-axis (to the west). In the vicinity of the 
area of low pressure, the geostrophic wind is southerly along the positive x-axis (to the east) and 
northerly along the negative x-axis (to the west). 

In each case, we want to subtract the geostrophic wind vector along the negative x-axis from the 
geostrophic wind vector along the positive x-axis. To do so, it is helpful to recall principles of 
vector subtraction. To subtract two vectors, take the vector being subtracted, flip it 180°, and add 
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it to the first vector. Vectors are added by placing the origin of the second vector at the tip/end of 
the first vector, then by drawing a new vector from the origin of the first vector to the tip/end of 
the second vector. This is depicted in Figure 3 below for both situations described above. 

 

Figure 3. Illustration of the vector subtraction operations described in the text above. 

After subtracting the vectors, application of the k x () operator necessitates rotating the new 
vector 90° to the right. This results in a vector pointing from east to west with the areas of high 
pressure and a vector pointing from west to east with the area of low pressure. The precise length 
of each vector can then be determined by multiplying the vector by the magnitude of the 
temperature gradient. 

The pattern of vertical motion can thus be determined by evaluating the divergence of the Q 
vectors. To the west of the area of low pressure, there is divergence of the Q vector. This implies 
descent. To the east of the area of low pressure, there is convergence of the Q vector. This 
implies ascent. 

For a sanity check, let us compare this evaluation with that which can be obtained from the 
quasi-geostrophic omega equation. To the west of the area of low pressure, there is cold 
geostrophic temperature advection, typically associated with descent. Conversely, to the east of 
the area of low pressure, there is warm geostrophic temperature advection, typically associated 
with ascent. Both of these findings are consistent with our Q vector-based interpretation. 

Since the magnitude of the geostrophic relative vorticity ζg is maximized at the base of troughs 
and apex of ridges, we can infer cyclonic geostrophic relative vorticity advection to the east of 
the area of low pressure and anticyclonic geostrophic relative vorticity advection to the west the 
area of low pressure. If we presume that the geostrophic relative vorticity advection is relatively 
small in the lower troposphere, this implies cyclonic geostrophic relative vorticity advection 
increasing with height to the east of the area of low pressure and anticyclonic geostrophic 
relative vorticity advection increasing with height to the west the area of low pressure. This 
implies ascent east and descent west of the area of low pressure, again consistent with our Q 
vector-based interpretation. 



The Q-Vector Form of the Quasi-Geostrophic Omega Equation, Page 9 

 

Example 2: Idealized Trough/Ridge Pattern With No Temperature Advection 

 

Figure 4. Q vectors (solid grey arrows) for an idealized trough/ridge pattern. Isotherms are 
depicted in grey dashed lines, with cold air to the north, and streamlines depicting the 

geostrophic flow are depicted in solid black lines. 

In many ways, this example is similar to the one presented above. However, in this case, the 
isotherms are parallel to the geostrophic wind which, by the definition of the geostrophic wind, 
means that the isotherms are parallel to the contours of constant geopotential height. In the 
following, as before, “east” refers to the positive x-axis along an isotherm while “west” refers to 
the negative x-axis along an isotherm. 

In the base of the trough, the geostrophic wind is from the southwest to the east and from the 
northwest to the west. Subtracting the latter vector from the former results in a vector pointing 
from south to north. Applying the k x () operator rotates this vector 90° to the right, such that the 
Q vector points from west to east. In the apex of the ridges, the geostrophic wind is from the 
northwest to the east and from the southwest to the west. Subtracting the latter vector from the 
former results in a vector pointing from north to south. Applying the k x () operator rotates this 
vector 90° to the right, such that the Q vector points from east to west. The precise magnitude of 
each Q vector can be obtained by multiplying each by the magnitude of the temperature gradient. 

In Figure 4, it is clear that Q vectors converge to the east of the trough and diverge to the west. 
As before, this signifies ascent and descent, respectively. 

Let us again interpret the scenario depicted in Figure 4 in terms of the quasi-geostrophic omega 
equation. With no geostrophic temperature advection, forcing is exclusively due to differential 
geostrophic vorticity advection. The pattern of differential geostrophic vorticity advection is 
identical to that described in our first example for the same physical reasons: cyclonic 
geostrophic relative vorticity advection increasing with height to the east of the trough and 
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anticyclonic geostrophic relative vorticity advection increasing with height to the west. As 
before, this implies ascent and descent, respectively, consistent with the Q vector interpretation. 

Example 3: Confluent Flow in the Entrance Region of a Jet Streak 

 

Figure 5. Orientation of Q vectors (solid grey arrows) for confluent flow (inferred from the 
green streamlines obtained from the geostrophic flow) associated with a westerly jet streak. 

Isotherms are depicted by the dashed black lines with cold air to the north. 

In the confluent flow scenario depicted above, the geostrophic wind accelerates (becomes larger) 
to the east. Thus, along an isotherm, the magnitude of the geostrophic wind – primarily westerly 
– is always larger to the east. Vector subtraction results in a relatively short vector pointing from 
west to east. Applying the k x () operator to this vector rotates it to the right by 90°, such that it 
points from north to south, as depicted in Figure 5 above. 

As depicted in Figure 5, there is no explicit Q vector convergence or divergence. Thus, what do 
the Q vectors look like further to the north and south? Visually, we can see that along the 
isotherms, the streamlines are not much different in direction or in packing/tightness. This 
implies no meaningful change in the direction or magnitude of the geostrophic wind along these 
isotherms, further implying that the magnitude of the Q vectors is relatively small. 

Thus, Q vectors are divergent to the north, in the colder air, and convergent to the south, in the 
warmer air. Thus, we see ascent to the south and descent to the north. We will revisit this and 
related concepts when we study jet streaks later in this course. 

Again, we wish to confirm our evaluation by utilizing arguments associated with the quasi-
geostrophic omega equation. There is implied warm geostrophic temperature advection (and thus 
implied ascent) to the south and cold geostrophic temperature advection (and thus implied 
descent) to the north. The interpretation in terms of differential geostrophic vorticity advection is 
slightly more nuanced. The streamlines imply the presence of a trough to the southwest and a 



The Q-Vector Form of the Quasi-Geostrophic Omega Equation, Page 11 

 

ridge to the northwest. This implies cyclonic geostrophic relative vorticity advection on the 
southern side of the jet streak and anticyclonic geostrophic relative vorticity advection on the 
northern side of the jet streak. Again presuming that geostrophic relative vorticity advection is 
weak near the surface, this pattern implies ascent to the south and descent to the north. Once 
again, this is consistent with our interpretation from the Q vector analysis.  

More Examples 

We will work through more examples of how the Q-vector form of the quasi-geostrophic omega 
equation may be applied to diagnose synoptic-scale vertical motion both in class, utilizing the 
NCAR/MMM Real-Time Diagnostics page linked from the course website, and in the second 
laboratory assignment of the semester. However, please do make use of the NCAR/MMM 
website outside of class to further aid your own study and interpretation of these concepts! 

 

Advanced Interpretation, Geostrophic Balance, and Application to Frontogenesis  

Advanced Interpretation: Relation to Horizontal Temperature Gradient 

To this point, we have discussed how the Q vector may be computed and/or estimated. Likewise, 
we have shown how its divergence can be used to infer the direction and magnitude of the 
synoptic-scale vertical motion. However, we have yet to describe the physical meaning of the 
components of the Q vector. That is the focus of this section. 

Equations (19) and (12) give our expressions for Q1 and Q2, respectively. Examining these 
expressions, we see that both look like temperature advection by the horizontal shear of the 
geostrophic wind. Alternatively, Q1 and Q2 could be interpreted as being related to the evolution 
of the horizontal temperature gradient. However, it is fair to ask whether these interpretations are 
the best possible interpretations for the Q vector. 

To do so, let us return to the simplified form of the quasi-geostrophic thermodynamic equation 
posed in (3). Let's make this equation even simpler: let us state that the flow is purely 
geostrophic such that the vertical velocity term Spω vanishes. This allows us to write: 

0=
∂
∂

+
∂
∂

+
∂
∂

y
Tv

x
Tu

t
T

gg  (27) 

 
Note that we have expanded the advection term in (3) into its components in writing (27). We 
first wish to find ∂/∂x of (27). In so doing, we must make use of the product rule when taking the 
partial derivatives of the second and third terms on the left-hand side of (27). Doing so, we 
obtain: 
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Next, we wish to commute the order of the partial derivatives in the first and last terms on the 
left-hand side of (28). Doing so and grouping like terms, we obtain: 
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The last two terms on the right-hand side of (29) can be written in vector form, resulting in: 
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However, we know that this term is related to Q1 – in fact, from (19), we know that it is 
equivalent to –Q1p/R. Moving this term to the right-hand side of (30), we obtain: 
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We now wish to find ∂/∂y of (27). In so doing, we must again make use of the product rule when 
taking the partial derivatives of the second and third terms on the left-hand side of (27). Doing 
so, we obtain: 
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Next, we wish to commute the order of the partial derivatives in the first and third terms on the 
left-hand side of (32). Doing so and grouping like terms, we obtain: 
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The last two terms on the right-hand side of (33) can be written in vector form, resulting in: 
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However, we know that this term is related to Q2 – in fact, from (12), we know that it is 
equivalent to –Q2p/R. Moving this term to the right-hand side of (34), we obtain: 
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Combining (31) and (35), we obtain: 

ji ˆˆ
21 QQT

p
R

Dt
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
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∇  (36) 

 
Equation (36) demonstrates that the Q vector can be interpreted as being proportional to the rate 
of change of the horizontal temperature gradient as forced exclusively by the geostrophic 
motion. We will return to this interpretation momentarily. 

 

Application to Geostrophic Balance 

Equations (12) and (19) state the definitions of Q2 and Q1, respectively. The forcings upon Q1 
and Q2 are entirely geostrophic in nature, whether directly (vg) or indirectly (T, related to 
geopotential height via the hydrostatic equation). Thus, as we discussed in the context of the 
quasi-geostrophic omega equation, purely geostrophic flow is responsible for departures from 
geostrophy (i.e., for ageostrophic flow). The resultant ageostrophic circulation, which is related 
to Q1 and Q2 by (11) and (18), works to restore geostrophic and thermal wind balance. 

We can further demonstrate the concept of geostrophic flow being responsible for departures 
from geostrophy in the context of the thermal wind relationship. It should be noted, however, 
that we will likely not cover this portion of the material in-depth in class, nor will you be 
responsible for it on quizzes or exams. 

First, we wish to use the thermal wind relationship posed in (7) to re-write (31) and (35) in terms 
of the vertical shear of the geostrophic wind. Substituting (7b) into (35) and (7a) into (31), we 
obtain: 
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 (37a) 
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 (37b) 

 
For comparison, we now return to equations (1) and (2). As we did with the simplified form of 
the quasi-geostrophic thermodynamic equation, we wish to consider the special case where the 
flow is purely geostrophic. This allows us to state: 
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By finding ∂/∂p of (38a) and (38b), we can develop alternate expressions for the left-hand sides 
of (37a) and (37b). We make use of the product rule and commute the order of particular partial 
derivatives in obtaining these expressions, as we did in equations (28) through (30) when 
operating on the quasi-geostrophic thermodynamic equation. In mathematical form, 
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If we apply the thermal wind relationship given by (7) to re-write the second and third terms of 
(39a) and (39b), we obtain: 
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Because the divergence of the geostrophic wind for f = constant is zero, the following statement 
is true: 
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We can apply (41) to the second term on the right-hand sides of (40a) and (40b) to obtain: 
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Substituting from (12) and (19), the definitions of Q1 and Q2, we obtain: 
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Compare (43) to (37). The left-hand sides of both equations are equivalent. However, while the 
right-hand sides of both equations are of equivalent magnitude, they are of opposite sign! This 
means that the forcing from the temperature gradient and vertical wind shear are not in balance. 

If thermal wind balance were maintained, (37) and (43) would not be opposite in sign. Instead, 
because this sign discrepancy exists, geostrophic forcing manifest through the Q vector destroys 
thermal wind balance. The ageostrophic circulation and accompanying vertical motion also 
manifest through the Q vector, as described above, works to offset this sign discrepancy and thus 
attempt to restore thermal wind balance. 

 

Application to Frontogenesis 

We close by returning to (36), the relationship between the Q vector and the rate of change of the 
horizontal temperature gradient as forced by the geostrophic motion. Recall that we can analyze 
fronts in terms of horizontal temperature gradients. Cold fronts are typically found on the leading 
edge of cold air, while warm fronts are typically found on the leading edge of warm air. Across 
the front, there is a large horizontal gradient of temperature. How this gradient – or, more 
specifically, its magnitude – changes with time gives a measure of how the intensity of the front 
changes with time. 

To explore this idea further, we want to develop a relationship for the rate of change of the 
magnitude of the horizontal temperature gradient: 
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We desire to expand the right-hand side of (44). In doing so, we make use of the following 
general relationship: 
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In (45), f is some arbitrary function and n is some arbitrary exponent or power. Making use of 
(45) as we expand the right-hand side of (44), we obtain: 

( )

















∂
∂

∂
∂

+






∂
∂

∂
∂

∇
=

















∂
∂

∂
∂

+






∂
∂

∂
∂

∇
=


















∂
∂

+






∂
∂


















∂
∂

+






∂
∂

=∇
−

y
T

Dt
D

y
T

x
T

Dt
D

x
T

T

y
T

Dt
D

y
T

x
T

Dt
D

x
T

T

x
T

x
T

Dt
D

x
T

x
TT

Dt
D

gg

gg

gg

1

22
2

1

2
1 222/122

 (46) 

 
If we substitute the definition of Q, as given by (31) and (35), (46) becomes:  
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Or, in vector notation, 
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What does (48) signify? This equation signifies that the rate of change of the magnitude of the 
horizontal temperature gradient by purely geostrophic processes, the left-hand side of (48), is 
proportional to how the horizontal temperature gradient ( T∇ ) and Q vectors (Q) are oriented 
with respect to one another.  

This latter remark about the orientation of the two vectors arises from the definition of the dot 
product contained within (48). To facilitate interpretation of (48), it is helpful to recall the 
properties of the dot product: 

• For any two vectors A and B, if A is perpendicular to B, their dot product is zero. 

• If A points in the same direction as B, their dot product is positive. 

• If A points in the opposite direction as B, their dot product is negative. 

As applied to (48), the rate of change of the magnitude of the horizontal temperature gradient by 
purely geostrophic processes is zero if the horizontal temperature gradient (always directed from 
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cold toward warm air) and Q vectors are perpendicular to one another. If the horizontal 
temperature gradient and Q vectors point in the same direction, the rate of change of the 
magnitude of the horizontal temperature gradient is positive. Conversely, if the horizontal 
temperature gradient and Q vectors point in the opposite direction, the rate of change of the 
magnitude of the horizontal temperature gradient is negative. 

Let us apply this concept to our “Example 3,” that of confluent flow into a jet streak, from earlier 
in this lecture. The horizontal temperature gradient in that example points from north to south, 
from cold toward warm air. Likewise, in that example, we demonstrated that the Q vectors point 
from north to south. Thus, in this case, the horizontal temperature gradient and Q vectors point in 
the same direction. This means that the magnitude of the horizontal temperature gradient will 
grow larger with time, a frontogenetic situation.  

We can confirm this by consider how the geostrophic wind, given by the streamlines in Figure 5, 
blows across the isotherms. To the northwest, the geostrophic wind blows from cold toward 
warm air. Conversely, to the southwest, the geostrophic wind blows from warm toward cold air. 
This pattern of geostrophic temperature advection acts to increase the magnitude of the 
horizontal temperature gradient to the west, as we deduced above. 

This exercise can be repeated for diffluent flow in the exit region coming out of a jet streak. In 
that case, the Q vectors and horizontal temperature gradient point in opposite directions, causing 
the magnitude of the horizontal temperature gradient to become smaller with time, a frontolytic 
situation. To gain experience with these concepts, I encourage you to work through this exercise 
on your own and to ask me if you run into any trouble in so doing. 

Thus, in the quasi-geostrophic system, the development and decay of fronts can be evaluated by 
considering how the Q vectors are oriented with respect to the isotherms! The dual utility of the 
Q vector – to evaluate both synoptic-scale vertical motion (and its associated ageostrophic flow) 
as well as the development and decay of fronts – illustrates yet another powerful advantage of 
the Q vector formulation over the normal form of the quasi-geostrophic omega equation! It also 
illustrates how ascent, clouds, and precipitation are often found in regions of frontogenesis, given 
the strong relationship between vertical motion and frontogenesis manifest by the Q vector. 

It should be noted, however, that the above framework only considers how geostrophic 
processes act to change the magnitude of the horizontal temperature gradient. Ageostrophic 
processes may be – and often are – important contributors to this as well. 

Advanced Application: The Four Quadrant Jet Model 

Earlier, we evaluated the Q-vectors (and, thus, vertical motion) for the case of confluent flow in 
the entrance region of a jet streak with isotherms oriented parallel to the jet. There is Q-vector 
convergence in the right entrance region of the jet streak, indicating middle tropospheric ascent, 
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and Q-vector divergence in the left entrance region of the jet streak, indicating middle 
tropospheric descent.  

Similar arguments can be posed for the exit region of the jet streak. In that case, the Q-vectors 
are oriented from south to north, indicative of Q-vector convergence in the left exit region and 
Q-vector divergence in the right exit region of the jet. This indicates middle tropospheric ascent 
and descent, respectively.  

One advantage of the Q-vector-based interpretation of the four quadrant jet model is its explicit 
consideration of the thermal gradient – or, in other words, the horizontal distribution of 
temperature. If the isotherms are not oriented parallel to the jet streak, the distribution of ascent 
and descent will be changed somewhat from that seen in the idealized example presented herein. 
The Q-vector-based interpretation accounts for this directly; the Q-G omega equation-based 
interpretation can do so as well if its thermal forcing term is evaluated. The parcel acceleration-
based interpretation, however, cannot do so directly. 

 


