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Synoptic Meteorology II: Quasi-Geostrophic Frontal Dynamics 

24-26 March 2015 

Readings: Section 6.3 of Midlatitude Synoptic Meteorology. 

Introduction 

When we examined frontogenesis and frontolysis, we examined frontal kinematics; e.g., the 
influence of the wind field upon the temperature field. To large extent, this explains much 
(~75%) of the frontal development process. However, in the real atmosphere, the wind field and 
temperature fields are linked; each evolves in concert with the other, particularly through 
ageostrophic (or secondary) circulations. As a result, we cannot describe frontal development, 
evolution, and dynamics using the frontogenetical function alone; something more 
comprehensive is necessary in order to do so. 

To begin to address this, we first reconsider the basic structure of a front. In “polar front” theory, 
a front can be described as a boundary between two different air masses. If an air mass is 
characterized by its density, this implies that density is discontinuous across the front; in other 
words, there is a “jump” in density along the front. From the ideal gas law, since pressure must 
be continuous across the front in order for pressure gradient force-induced parcel accelerations to 
be finite (i.e., reasonable), there must be a “jump” in temperature along the front. 

In reality, pressure is continuous across a front; the isobars “kink” with cyclonic curvature along 
and across the front, with the front itself being located along a minimum in pressure. However, 
density and temperature are both also continuous across a front. A front is not a sharp boundary 
between air masses but rather a zone of finite width (from ~1 km to ~100 km or more), such that 
it is more accurately characterized by a discontinuous temperature gradient. Consequently, the 
two-dimensional structure of a front is not accurately depicted in “polar front” theory. There are, 
of course, other shortcomings. 

That said, “polar front” theory does a reasonable job of specifying the vertical slope of a front, as 
specified through the Margules’ frontal slope equation. Briefly, Margules’ frontal slope equation 
states that the slope of a frontal boundary is primarily related to the ratio between the across-
front vorticity and across-front difference in temperature; there is also a latitudinal-dependence 
that arises due to the Coriolis parameter f.  

The above-stated insight into “polar front” theory arises from a basic consideration of frontal 
dynamics using, nominally, quasi-geostrophic theory. As stated above, there are some positive 
and some negative aspects to its depiction of frontal dynamics. This suggests that quasi-
geostrophic theory, though not entirely correct, may be at least partially correct in how it depicts 
frontal dynamics. In this lecture, we strive to more comprehensively describe frontal dynamics in 
the quasi-geostrophic system in order to better highlight its strengths and limitations. Many of its 
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limitations are addressed by what is known as the semigeostrophic approximation; however, a 
treatment of the semigeostrophic approximation is beyond the scope of this class. 

 

Preliminary Remarks 

Figure 1 below depicts an idealized two-dimensional view of isentropes through a frontal zone. 
We scale x ~ l,  where l is the cross-front scale, and y ~ L, where L is the along-front scale. This 
represents what is known as anisotropic scaling; in other words, the two horizontal length scales 
are not the same. We state that l << L, such that cross-front distance is much less than the along-
front distance, as we discussed when we described the observational characteristics of fronts in a 
previous lecture. Properties vary rapidly along l whereas they do not vary so rapidly along L. 

 

Figure 1. Idealized schematic of isentropes (red lines) through a cold frontal zone. Note that the 
along-front and cross-front directions and scales are defined specifically with respect to the 

northeast-southwest sloping cold frontal zone itself. 

The wind in the x-direction scales as u ~ U, whereas that in the y-direction scales as v ~ V. To 
examine the relative values of U and V, we invoke continuity on a constant height surface, i.e., 
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While we do not explicitly know the scale of ∂w/∂z, we do know that we want the scales of the 
other two terms to be approximately equal to one another. Therefore, we require that U/l ~ V/L, 
or U/V ~ l/L. If l << L, then U << V for this relationship to be satisfied. Time scales as t ~ U/l in 
the x-direction and as t ~ V/L in the y-direction. 
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The horizontal momentum equations on a constant height surface, incorporating geostrophic 
balance plus the acceleration terms, can be expressed as: 
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Recall from that same lecture that a general Rossby number can be defined as: 
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More generally, the Rossby number reflects the ratio of the acceleration term to that of the 
Coriolis term. With this in mind, the Rossby numbers in the x- and y-directions are given by: 
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Let us first examine the scale of the total derivatives in (4), making use of the relationship 
between U/V and l/L expressed above: 
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The scale of fv is simply fV, whereas that of fu is simply fU. Thus, plugging this and (5) into (4), 
we obtain: 
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Above, we noted that U << V and l << L. Thus, for Rox, the numerator is relatively small while 
the denominator is relatively large. Conversely, for Roy, the numerator is relatively large while 
the denominator is relatively small. Thus, Rox is relatively small while Roy is relatively large. 
Numerically, if we let U ~ 5 m s-1, V ~ 25 m s-1, l ~ 200 km, and L ~ 1000 km, then Rox ~ 0.05 
and Roy ~ 1.25. 

As a result, in the x-direction (i.e., the cross-front direction), the flow is approximately 
geostrophic given the very small value of the Rossby number. This is known as cross-front 
geostrophy, where the along-front wind is nearly geostrophic (i.e., v ~ vg). Note that it is the 
along-front wind that is defined as geostrophic here because that is the wind which appears on 
the right-hand side of the x-momentum equation. 

In the y-direction (i.e., the along-front direction), the flow is not at all geostrophic given the very 
large value of the Rossby number. Thus, we cannot make the geostrophic approximation for the 
cross-front wind and must assume that the cross-front geostrophic and cross-front ageostrophic 
wind are of similar magnitude (e.g., ug ~ uag). 

This consideration in and of itself begins to illustrate why quasi-geostrophic theory is in 
sufficient to describe frontal dynamics: the cross-front wind is not quasi-geostrophic, and 
consequently we should thus have no impression that insight drawn from quasi-geostrophic 
theory will be qualitatively or quantitatively accurate. Thus, having illustrated (in part) why 
quasi-geostrophic theory fails, we want to illustrate how quasi-geostrophic theory fails to 
describe frontal dynamics. 

 

The Quasi-Geostrophic System of Equations for Frontal Dynamics 

We now wish to state the primitive equations applicable to the quasi-geostrophic system. In an 
earlier lecture, we stated the quasi-geostrophic form of the primitive equations on isobaric 
surfaces; however, we now wish to state them as applicable on constant height surfaces for 
simplicity. In addition, we will write them in slightly different terms than we did before, albeit 
without derivation as we do so. 

We start with the x-momentum equation. Because we stated that the x-direction, or the along-
front direction, is in approximate geostrophic balance, the x-momentum equation can be reduced 
to its geostrophic form, i.e., 
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x
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Next, we consider the y-momentum equation. Because the y-direction, or the cross-front 
direction, is not in approximate geostrophic balance, we cannot reduce the y-momentum 
equation to its geostrophic form. (We could, if we desired a fully geostrophic depiction of frontal 
dynamics. Instead, however, we do not so as to obtain a quasi-geostrophic depiction of frontal 
dynamics.) Consequently, the y-momentum equation is given by: 
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But, from geostrophic balance, we know that: 
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Thus, substituting into (7b), where u = ug + uag, then (7b) becomes: 
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The hydrostatic equation on a constant height surface can be expressed as: 
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Where b in (8) is given by: 
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where θ00 is a reference-state potential temperature and θ0 is the surface potential temperature. 

The thermodynamic equation on a constant height surface can be expressed as: 
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where N2, a measure of the static stability, is given by: 
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Note that the total derivative in (7c) and (9) is of the form: 
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In defining the total derivative, we only include the geostrophic component of the along-front 
wind u. However, earlier in this lecture, we stated that the along-front wind was not geostrophic. 
Why, then, do we consider it to be geostrophic here, in contrast to the above? This is done to 
remain faithful to the idea that this is a quasi-geostrophic (and not geostrophic or 
semigeostrophic) system while still keeping in mind the basic distinctions between the cross-
front and along-front directions and scales. There are important physical considerations here as 
well: expressing (10) in terms of purely geostrophic quantities does not allow for the possibility 
of advection by vertical motion w or the ageostrophic flow uag. These quantities define the 
secondary (ageostrophic, vertical, transverse, etc.) circulation of a front.  

Thus, while we allow for there to be a secondary circulation to the front (e.g., via continuity, as 
expressed by (11) below), we do not allow for secondary circulation-related processes to impact 
frontal dynamics in this quasi-geostrophic framework. Doing so would take the cross-front and 
along-front distinctions noted above into full account, which is known as the semigeostrophic 
approximation. As stated above, however, examination of the semigeostrophic approximation 
and how its depiction of frontal dynamics differs from that obtained from the quasi-geostrophic 
system is beyond the scope of this class.  

The continuity equation valid for this set of equations is given by: 
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The system of equations given by (7), (8), (9), and (11), along with the ideal gas law, form the 
quasi-geostrophic primitive equation set that we will use to study frontal dynamics. 
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Further Examination: Toward the Sawyer-Eliassen Equation 

When we developed the quasi-geostrophic omega equation, we stated that the role of the 
geostrophic wind was to destroy geostrophic balance. In other words, all of the forcing terms for 
omega, an inherently ageostrophic quantity, are a function of purely geostrophic forcings. The 
role of the ageostrophic wind (and, consequently, omega) is to restore geostrophic balance. We 
find that this is true in the quasi-geostrophic depiction of frontal dynamics as well, though it 
takes a fair bit of mathematical manipulation to be able to make this clear. 

If we take ∂/∂z of (7a) so as to form a thermal wind equation for this system, we obtain: 
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If we commute the derivatives on the right-hand side of (12a) and substitute from the hydrostatic 
equation, we obtain: 
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In so much as (12b) holds, then we can also state that the following must be true: 
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We wish to be able to re-write the expression given by (13). To do so, we need to obtain 
expressions for the two partial derivatives that it contains. These can be obtained by expanding 
and operating upon expanded forms of (7c) and (9). 

Taking f*∂/∂z of (7c), we obtain: 
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If we expand (14) by use of the chain rule, commuting derivatives as necessary, and group like 
terms, we obtain: 
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Likewise, if we take ∂/∂x of (9), we obtain: 
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If we expand (16) by use of the chain rule, commuting derivatives as necessary, and group like 
terms, we obtain: 
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We wish to re-write select terms in (15) in terms of b or, more specifically, partial derivatives of 
b. To do so, we can make use of the hydrostatic equation. If we take ∂/∂y of the hydrostatic 
equation (8), we obtain: 
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Likewise, if we take ∂/∂y of the hydrostatic equation, we obtain: 
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Furthermore, recall that the geostrophic wind is, by definition, non-divergent. This allows us to 
state that: 
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If we substitute (18) and (19) into (15), we obtain: 
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We define a quantity Q1 as: 
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Note that Q1 is a purely geostrophic quantity. 

Substituting into (20) and (17) with (21), we obtain: 
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If we substitute (22) into the relationship given by (13) and solve for Q1, we obtain: 
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Equation (23) can be viewed as akin to a quasi-geostrophic omega equation. It illustrates that 
purely geostrophic forcing, as manifest through Q1, is responsible for the destruction of 
geostrophic balance, as manifest by the presence of non-zero w and uag on the left-hand side of 
(23). Stated differently, geostrophic forcing results in departures from thermal wind balance 
(e.g., the balance between the vertical wind shear and the horizontal temperature gradient that 
defines a frontal zone) that, ultimately, the ageostrophic circulation attempts to restore. 

We can manipulate the continuity equation, given by (11), to show that: 
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From (24), we can define a streamfunction ψ that satisfies the equality in (24). This 
streamfunction is defined in terms of uag and w by the following: 

z
uag ∂

∂
=

ψ , 
x

w
∂
∂

−=
ψ  (25) 

 
If you plug (25) into (24), you see that the equality holds. The streamfunction is simply a 
representation of streamlines. In this case, it represents the streamlines of the secondary 
circulation given by the cross-front ageostrophic wind uag and the vertical motion w. The 
streamfunction is defined in the northern hemisphere as positive for counterclockwise turning 
and as negative for clockwise turning. 

In the x-z plane, for the isentrope configuration depicted in Figure 1, a positive streamfunction (ψ 
> 0) is depicted in Figure 2. Conversely, a negative streamfunction (ψ < 0) in the x-z plane for 
this same isentrope configuration is depicted in Figure 3. A positive streamfunction is 
characterized by ascent where it is warm and descent where it is cold and is thus a direct 
circulation. A negative streamfunction is characterized by ascent where it is cold and descent 
where it is warm and is thus an indirect circulation. 
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Figure 2. A positive streamfunction, maximized at the center of the two circles, in the x-z plane. 
The signs on w and uag are determined by the horizontal (x) and vertical (z) derivatives of the 

streamfunction ψ respectively. 

 

Figure 3. As in Figure 2, except for a negative streamfunction maximized at the center of the 
two circles. 
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The Sawyer-Eliassen Equation 

Geostrophic and Ageostrophic Frontogenesis and Frontolysis 

If we plug (25) into (23), we obtain: 
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Equation (26) is what is known as the quasi-geostrophic form of the Sawyer-Eliassen equation. 

Earlier in the semester, we stated that the second derivative of a quantity is proportional to the 
negative of that quantity. Therefore, for N2 and f2 both positive-definite, the left-hand side of (26) 
is proportional to –ψ. Consequently, given the leading negative on both sides, ψ is proportional 
to Q1; i.e., where Q1 is positive, so too is the streamfunction. Naturally, this invites a further 
examination of the forcing expressed by Q1. 

First, let us recall (22). Q1 appears as a negative value on the right-hand side of (22a) whereas it 
appears as a positive value on the right-hand side of (22b). Equation (22a) describes the 
evolution of the along-front vertical geostrophic wind shear following the motion, whereas 
equation (22b) describes the evolution of the cross-front buoyancy gradient following the 
motion. It can be shown that the latter is proportional to the evolution of the cross-front potential 
temperature gradient following the motion.  

Consequently, positive Q1 increases the cross-front potential temperature gradient (i.e., is 
frontogenetic) while decreasing the along-front vertical geostrophic wind shear. Inherently, this 
counteracts thermal wind balance, which states that the cross-front potential temperature gradient 
is in balance with (i.e., is directly proportional to) the along-front vertical geostrophic wind 
shear. Thus, this provides another illustrative example of how purely geostrophic forcing acts to 
destroy geostrophic and thermal wind balance. For positive Q1, the resultant ageostrophic 
circulation attempts to counteract this forcing, reducing the cross-front potential temperature 
gradient and increasing the along-front vertical geostrophic wind shear. 

Above, we stated that a positive streamfunction is characterized by a thermally direct circulation, 
with ascent in the warm air and descent in the cold air. We also stated that a positive 
streamfunction is associated with a positive value of Q1. The geostrophic forcing provided by Q1 
> 0 acts to strengthen the cross-front potential temperature gradient and weaken the along-front 
vertical geostrophic wind shear. The ageostrophic forcing that it drives, thus, acts to weaken the 
cross-front potential temperature gradient and increase the along-front vertical geostrophic wind 
shear in order to restore thermal wind balance. Thus, the thermally direct ageostrophic 
circulation is said to be frontolytic. 



Quasi-Geostrophic Frontal Dynamics, Page 12 

 

Conversely, a negative streamfunction is characterized by a thermally indirect circulation, with 
descent in the warm air and ascent in the cold air. We also stated that a negative streamfunction 
is associated with a negative value of Q1. The geostrophic forcing provided by Q1 < 0 acts to 
weaken the cross-front potential temperature gradient and strengthen the along-front vertical 
geostrophic wind shear. The ageostrophic forcing that it drives, thus, acts to strengthen the 
cross-front potential temperature gradient and decrease the along-front vertical geostrophic wind 
shear in order to restore thermal wind balance. Thus, the thermally indirect ageostrophic 
circulation is said to be frontogenetic. 

The above-stated insight is in agreement with the analysis of the tilting term to the 
frontogenetical function examined in the last lecture. Ascent brings about adiabatic cooling via 
expansion whereas descent brings about adiabatic warming via compression. Ascent in the cold 
air and descent in the warm air thus cools where it is cold and warms where it is warm, 
strengthening the horizontal potential temperature gradient. 

Care must be taken, however, to keep the ageostrophic and geostrophic forcing separate in one’s 
mind when assessing frontogenetic and frontolytic situations. The entrance and exit regions of jet 
streaks highlight this concern nicely. The entrance region of a jet, as we demonstrated in our 
lecture on Q-vectors, is generally frontogenetic whereas the exit region of a jet is generally 
frontolytic. However, this is a geostrophic forcing; the horizontal geostrophic flow is confluent 
in the jet entrance region and diffluent in the jet exit region. Meanwhile, the entrance region of a 
jet is characterized by a thermally direct ageostrophic circulation, which is frontolytic, whereas 
the exit region of a jet is characterized by a thermally indirect ageostrophic circulation, which is 
frontogenetic. This, inherently, is an ageostrophic forcing. 

 

Energetics  

Above, we stated that the role of the ageostrophic circulation is to restore thermal wind balance. 
For a thermally direct ageostrophic circulation, where Q1 > 0 and ψ > 0, this is accomplished by 
a reduction in the cross-front potential temperature gradient and an increase in the along-front 
vertical geostrophic wind shear. For a thermally indirect ageostrophic circulation, where Q1 < 0 
and ψ < 0, this is accomplished by an increase in the cross-front potential temperature gradient 
and a reduction in the along-front vertical geostrophic wind shear.  

It is thus natural to ask, how is this accomplished in terms of atmospheric energetics, namely 
available potential energy and kinetic energy? In the case of the thermally direct ageostrophic 
circulation, available potential energy is extracted into kinetic energy, as reflected by the 
increased along-front vertical geostrophic wind shear. In the case of the thermally indirect 
ageostrophic circulation, kinetic energy is lost as it is converted back to available potential 
energy, as reflected by the decreased along-front vertical geostrophic wind shear. 
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Further Interrogation of the Sawyer-Eliassen Equation 

For convenience, we restate Q1: 
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There are two forcing terms to Q1: one involving the along-front geostrophic wind vg and one 
involving the cross-front geostrophic wind ug. The term involving the along-front geostrophic 
wind is known as the horizontal shear forcing term, as it reflects the horizontal shear of the 
along-front geostrophic wind, nominally across the frontal zone. The term involving the cross-
front geostrophic wind is known as the confluence forcing term, as it reflects the combined 
effects of convergence and deformation along the frontal zone. 

To examine the effects of confluence and horizontal shear upon Q1, let us consider an illustrative 
example of a northwest-to-southeast oriented horizontal potential temperature gradient. Cold air 
is found to the northwest while warm air is found to the southeast. Consequently, for this 
example, ∂b/∂x > 0 (warmer/more buoyant along the positive x-axis, colder/less buoyant along 
the negative x-axis) and ∂b/∂y < 0 (colder/less buoyant along the positive y-axis, warmer/more 
buoyant along the negative y-axis). 

Let us impose a confluent flow upon this horizontal potential temperature gradient, as illustrated 
in Figure 4. In this example, the axis of contraction is aligned with the x-axis whereas the axis of 
dilatation is aligned with the y-axis. From visual inspection, we presume that this flow should be 
frontogenetic: the streamlines act to bring the isentropes closer together, particularly toward the 
center of the diagram. We can confirm this mathematically by evaluating ∂ug/∂x across the 
frontal zone. To the east, along the positive x-axis, ug < 0 (i.e., directed from east to west); 
conversely, to the west, along the negative x-axis, ug > 0 (i.e., directed from west to east). Thus, 
∂ug/∂x < 0. Since ∂b/∂x > 0, and given the leading negative on the confluence term, Q1 > 0. 
From (22b), Q1 > 0 is frontogenetic, confirming our visual inspection. 

Now, let us impose a cyclonic horizontal shear flow upon this horizontal potential temperature 
gradient, as illustrated in Figure 5. The horizontal shear is entirely in the meridional direction 
given the convention on the horizontal shear term. From visual inspection, we presume that this 
flow will at least result in the isentropes being rotated cyclonically. Mathematically, we find that 
this flow is also frontogenetic. To the east, along the positive x-axis, vg > 0 (i.e., directed from 
south to north); conversely, to the west, along the negative x-axis, vg < 0 (i.e., directed from 
north to south). Thus, ∂vg/∂x > 0. Since ∂b/∂y < 0, and given the leading negative on the 
horizontal shear term, Q1 > 0, again a frontogenetic situation. 

Of course, not all flows will be as easy to visually inspect as these two flows. Indeed, most 
atmospheric flows contain rotational, divergent, and deformation components, and it is often 
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difficult to visually separate them from each other. Likewise, it goes without saying that not all 
flows across horizontal potential temperature gradients will be frontogenetic. Thus, it is 
extremely helpful to know the mathematical framework described above! 

 

 

Figure 4. Idealized schematic of a northwest-to-southeast oriented horizontal potential 
temperature gradient with cold air to the northwest and warm air to the southeast. Isentropes are 

depicted by the labeled maroon lines while the confluent flow is depicted by the light blue 
streamlines. 

 

 

Figure 5. As in Figure 4, except for a cyclonic horizontal shear flow, as depicted by the light 
blue vectors. 
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We now wish to examine the vertical structure of quasi-geostrophic frontal dynamics in some 
detail. We noted above that the thermally direct circulation is frontolytic, though the geostrophic 
flow that forces it is frontogenetic. At the surface, where w = 0 by definition, the frontolytic 
effect of the thermally direct circulation is negligible. As you ascend into the middle troposphere, 
w typically increases in magnitude, thereby increasing the frontolytic effect of the thermally 
direct circulation. (This can alternatively but equivalently be viewed in the context of the tilting 
term to the frontogenetical function.)  

Thus, geostrophic frontogenesis occurs largely unabated at the surface but is mitigated to some 
extent by the ageostrophic circulation aloft. Isentropes at the surface become tightly packed 
whereas they become less tightly packed aloft. The inverse is true for a frontogenetic thermally 
indirect circulation. The geostrophic flow that forces the indirect circulation is frontolytic. Such 
frontolysis is strongest at the surface and decays upward as the influence of the ageostrophic 
circulation increases with height. Isentropes at the surface become less tightly packed whereas 
they do so to a lesser extent aloft. 

Consequently, a front in the quasi-geostrophic system looks like that depicted in Figure 6 below: 
strongest near the ground and less intense with height. This in and of itself is not necessarily a 
problem, but there are two other interesting elements highlighted by Figure 6 that are problems. 
There is no tilt of the front with height, whereas we know that fronts in the real world tilt with 
height. Furthermore, on the warm side of the front, lower tropospheric static instability (i.e., 
potential temperature decreasing with height) of a physically-unrealistic sense may be found. 
These unrealistic elements to quasi-geostrophic frontal structure arise because the definition of 
the total derivative given by (10) neglects advection by the ageostrophic component of the cross-
front wind uag. Including this in the definition of the total derivative addresses these issues to 
large extent. 

This shortcoming also impacts the rate at which a front develops within the quasi-geostrophic 
system. To illustrate this, let us express (17) in terms of the confluence term alone: 
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Let α = -∂ug/∂x, such that: 
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Equation (29) is an ordinary differential equation with a basic solution of the form: 
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subject to the condition that the magnitude of the horizontal buoyancy (or potential temperature) 
gradient approaches infinity as time t approaches infinity. Equation (30) describes exponential 
growth of the cross-front horizontal potential temperature gradient as a function of time and the 
magnitude of the horizontal confluence. However, for realistic values of α, frontal development 
is too slow compared to observations. This illustrates yet another shortcoming of quasi-
geostrophic frontal dynamics. 

 

Figure 6. Vertical cross-section (x-z) depiction of isentropes (labeled every 3 K) associated with 
a frontal zone under the constraints of quasi-geostrophic dynamics. Reproduced from Mid-

Latitude Synoptic-Dynamic Meteorology (Vol. II) by H. Bluestein, their Figure 2.52. 

Finally, through the quasi-geostrophic vorticity equation, it can be shown that lower tropospheric 
convergence beneath the ascending branch of an ageostrophic circulation and lower tropospheric 
divergence beneath the descending branch of an ageostrophic circulation result in the spin-up of 
cyclonic and anticyclonic geostrophic relative vorticity, respectively, due to the stretching of 
planetary vorticity. In the quasi-geostrophic system, such convergence and divergence are of 
equal magnitude, such that regions of both large cyclonic and anticyclonic geostrophic relative 
vorticity form in the vicinity of the frontal zone. In reality, however, cyclonic geostrophic 
relative vorticity is dominant. This shortcoming arises because the stretching term acts only upon 
planetary vorticity when, instead, it should most accurately operate upon both planetary and 
geostrophic relative vorticity.  


