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The thermodynamics of homogeneous, isotropic, unpolarized electromagnetic
radiation in a cavity with volume and temperature controllable as the independent
variables is analyzed. Internal energy, pressure, chemical potential, enthalpy, Gibbs
free energy, heat capacities, expansivity, and compressibility are all derived from the
Helmholtz free energy. Topics treated are the third law, isothermal, adiabatic, and
free expansion, throttling process, phase equilibrium, stability, and the Carnot cycle.

INTRODUCTION

The basic problem of this paper is to examine the ther-
modynamics of blackbody radiation. The usual emphasis
on the Planck distribution is almost completely surpressed
in favor of the overall integrated results treated as a ther-
modynamic system. A prime purpose of this study is to form
a detailed link between thermodynamics and cavity radia-
tion in such a way so as to stimulate the interest and perhaps
enhance the knowledge of the professional scientist, and to
present the material in a fashion suitable for a course in
thermodynamics.

There are probably many reasons why such a topic is
important. The historical and both the theoretical and ap-
plied aspect of blackbody radiation are well known and need
not be repeated here. Yet, the present emphasis is different
in that the interest is on the macroscopic theory rather than
the distribution law. One finds that it’s possible to simul-
taneously think in terms of electromagnetic theory and
thermodynamics, so that the problem tends to force a unity
of thought between seemingly two unrelated subjects in
physics. From a pedagogical viewpoint, the student learns
(sometimes with considerable surprise) that thermody-
namics can be applied to other systems besides the usual
solids, liquids, and (ordinary) gases.

Many texts contain specialized treatments of blackbody
thermodynamics. Rather than review the literature at this
point, those that I've found most useful will be referenced
in the body of the paper. Some of the topics treated here,
as specifically applied to radiation, such as the third law,
free expansion, phase change, Carnot cycle, couldn’t be
found in any of the source material, so that only general
references to these phenomena are made. The historical
aspect of the problem is well treated by Kangro.!

The paper begins with a presentation of the Helmholtz
free energy as a function of temperature and volume, from
which all of the other thermodynamic parameters follow.
In particular, the various relations are summarized in Table
1. By the usual definitions, the heat-capacities, volume ex-
pansivity, and isothermal compressibility are derived. A
short section is devoted to the Gibbs free energy and the
chemical potential because of their unique (yet trivial) roles
in cavity radiation. Likewise, a separate section is reserved
for the third law of thermodynamics for similar reasons.
This section includes also a brief discussion of zero-point
entropy and energy. The emphasis then changes from the-
oretical to the more engineering type processes such as
isothermal, adiabatic, and free expansions, a throttling
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process, phase equilibrium, stability, and the Carnot cycle.
The paper concludes with some comments and discussion
of the treated topics.

FUNDAMENTAL RELATIONS

The system to which the thermodynamics is being ap-
plied is certainly a strange one when compared to typical
problems encountered in, say, engineering thermodynamics.
This system consists of electromagnetic radiation in ther-
modynamic equilibrium inside a closed, completely evac-
uated cavity of arbitrary shape with volume ¥ and tem-
perature T. Volume and temperature represent the two
independent and measureable parameters in terms of which
all thermodynamic variables may be expressed. Since
equilibrium is assumed, one may define the radiation
temperature as that of the walls. The system is an isother-
mal enclosure, and every point has the property that the
intensity is independent of position. Furthermore, the ra-
diation is isotropic and unpolarized.

A typical approach taken by most modern physics texts23
is to treat the radiation as a series of standing waves. The
normal-mode density and energy per mode are calculated,
and this leads to the Planck law. An alternate viewpoint is
taken in most statistical mechanics texts where one con-
siders the system to consist of a photon gas that obeys
Einstein-Bose statistics. In a way, the latter school of
thought may be more appealing in that gases are so familiar,
especially when it is realized that the photon gas is very
much an ideal gas, since there is no interaction between the
particles (other than negligibly small quantum-mechanical
effects). The fact that photons do not interact prevents a
relaxation mechanism for energy transfer between photon
states (corresponding to different frequencies) necessary
to establish thermodynamic equilibrium. A small, black
dust particle with very small heat capacity may be intro-
duced into the cavity to serve as a coupling mechanism
between states. The reader interested in the history of
blackbody radiation would do well to read the article by
Lewis* on Einstein’s derivation of the Planck law.

The theme of this paper is to treat blackbody radiation
as a thermodynamic system, although statistical concepts
will sometimes be used, mainly in a qualitative fashion. In
order to arrive at the various thermodynamic parameters
as a function of T and V, many texts, such as Crawford,’
use nonthermodynamic information to derive the fact that
the radiation pressure is one third the energy density and
then proceed to calculate other quantities of interest, such
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Table I. Thermodynamic relations for blackbody radiation.

F S H P N G "
—(1/3)bVT*  (4/3) bVT? (4/3) BVT*  bVT* (1/3) bT* [305(3)/x%] bV T? 0 0
-PV 4/3) Uyt “4/3)HU 3PV /3y
- (1/4) TS 4(b/3)1 /4y P3s4 TS (3S/8)43(BVy~1/3
-(1/3)U (4/3) (bV)1 741314 4PV

S(3P/b)1/4
as the equation of state, as is done in Zemansky® and in U=F+ TS =bVT (6)

Desloge.” One could take the pressure-energy density re-
lationship or the equation of state as an experimental fact
and then continue. The point here is, that because of the
tremendous generality of thermodynamics, the latter is
incapable of generating an equation of state on first prin-
ciples; external information is required, whether theoretical
_or experimental.

An alternate approach is perhaps more appealing to
students. A clue is contained in the natural choice of T and
V as the independent (and controllable) variables. This
immediately suggests the Helmholtz free energy F as the
potential from which all thermodynamic information may
be derived. Recall that

dF = ~SdT — PdV, 1)

where S is entropy and P is pressure. Usually, Eq. (1) in-
cludes a udN term where u is the chemical potential and
N is the number of particles in the system. This would imply
that NV is an independent variable, which it is not for
blackbody radiation. Thus if we have F as a function of T
and V, then S and P are both known from

- _|°F = _[9F
S = (a;)V' P (alli)r' (2)

All other thermodynamic quantities may then be calculated.
But how do we get F = F(T,V)? A successful solution at this
point in a junior-level course is to take perhaps a half period
to qualitatively explain the concept of a partition function,
how it’s calculated (in words), and its relationship with the
Helmbholtz function in general. Students seem to appreciate
this. Then, without explicit derivation, the F function is
written down for the problem, namely,

F=—(1/3)bVT*, 3)

where b is a known constant, b = 8m3k*/(15h3¢3). I've
found this method, after many years of trial, to be accepted
and better understood by undergraduates, especially be-
cause complete thermodynamic information for blackbody
radiation is contained in Eq. (3).

Other parameters follow immediately:

d 4
- = = — 3
S (alr'y FoVT, (4)

--|°f 1
B

Notice that Eq. (5) is the equation of state for the system,
and it is very important to note the independence of volume.
By definition, F = U — TS (where U is internal energy),
therefore
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By combining Eqgs. (5) and (6), one derives simply and
routinely the relationship between energy density u = U/V
and pressure P = u/3. The enthalpy H follows immediately
from its definition, H = U + PV, giving

H = (4/3)bVT*. (7)

Likewise, the Gibbs free energy G, by definition, is H
— T8, thus

G = (4/3)bVT* = T[(4/3)bVT?)] = 0. (8)

The fact that G is identically zero presents a simplification
in a formal calculation of physical results, but also marks
a possible complication in interpretation. This null result
may be traced to the fact that pressure is uniquely deter-
mined by temperature; thus G is not really definable for the
present case where P and T are not independent.
The fact that G is zero also causes the chemical potential
i to be zero. Assume there are N particles (photons) in the
single-component system, then G = uN = 0, which
forces
r=0, )]

where N = 0; otherwise no system exists! A more funda-
mental viewpoint for the zero value of u is that the chemical
potential is defined only with respect to a conserved particle
number NV, which is not the case for the blackbody system.
Thus in a formal sense, G and u are both zero; actually
neither are defined for the present thermodynamic
system.

Although N (which depends upon the Planck distribu-
tion) will be examined in more detail later, the equation for
it will be quoted without derivation,?? since it doesn’t follow
from the treatment in this paper:

N = [308(3)/ 74k ]bVT3, (10)

where {(3) is the zeta function of argument three, equal to
1.202. Notice that N is strictly a function of 7 and ¥ and
must not be considered an independent parameter; that is,
we're dealing with an open system where the number of
particles is not conserved.

So far, P, U, F, S, H, and N have been expressed as
functions of T and V (with G and u both zero). However,
it’s often desirable for theoretical interpretation to present
these parameters in terms of other combinations. Fur-
thermore, while complete thermodynamic information is
contained in Eq. (3) with F = F(T,V), one may exhibit
exactly the same information in terms of U = U(S,V), S
= S(U,V), H = H(S,P). Table 1 presents the various useful
combinations of the thermodynamic variables.
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HEAT CAPACITIES, COMPRESSIBILITY,
EXPANSION COEFFICIENT

A simple calculation leads to C,, the heat capacity at
constant volume:

=Y - 3
(o (b?)v 4bVT3. (11)

On the other hand, the heat capacity at constant pressure
C,, the volume expansivity 3, and the isothermal com-
pressibility x are undefined for this system, because P and
T are not independent variables, which is a requirement for
the derivatives in their definitions, although one might make
a heuristic case for assigning infinite values to all three. For
a physical interpretation, consider C, as an example. By
virture of its definition, we’re essentially asking how much
energy must be added to the system to change the temper-
ature by AT at constant pressure. But at fixed P, AT = 0,
so that no finite amount of energy can increase the tem-
perature.

In the case of C, [Eq. (11)], notice that the temperature
dependence is identical to that of a crystal at low temper-
ature, as derived from the Debye theory. The reason for this
is that the frequency distribution of the normal modes has
the same mathematical form in both theories, and the mean
energy of each mode is that of a harmonic oscillator. Thus
just as photons are a result of the quantization of electro-
magnetic waves, phonons correspond to the quantization
of elastic waves. Incidentally, a numerical evaluation of Eq.
(11) shows that C, is extremely small, being about 10712
that of an equal volume of water at room temperature.

THIRD LAW OF THERMODYNAMICS

Consider two forms of the third law of thermody-
namics, !9

weak form: lim ASy =0
T—0

strong form: lim S = 0.
T—0

The weak form says that the change in entropy for an
isothermal, reversible process approaches zero as temper-
ature approaches zero, whereas the strong form decrees that
entropy itself is zero at T = 0. Notice that the strong form
contains the weak form as a special case. Historically,
Nernst had considered the original statement of the third
law to be restricted to condensed media, but he later mod-
ified it to apply to gases.!!

If Eq. (3) is correct for blackbody radiation, then the
entropy follows from Eq. (4), which shows that S — 0 as
T — 0, corresponding to the strong form.!2 This also follows
from the fact that at 7 = 0, NV = 0, so there are no particles
in the system.

From Eq. (1), it follows that (3S/dV)r = (0P/0T)y (a
Maxwell equation) hence, from the third law,

oS
li =0,
TI—I-I}) ovir
resulting in
oP
lim |-——| =0,
TIE.I}) (aT |4

which should be true in general. The latter is correct for
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blackbody radiation because (dP/dT)y = 4bT3/3 [from
Eq. (5)], and this goes to zero as T approaches zero.
Consider the behavior of C, as absolute zero is ap-
proached. Assume S = S(T,V), then
oS oS
is=[28) ar+[28) .
Then for constant volume, dS = (dS/0T),dT and

AS=fT[b f Sour.
o \oT

This is an improper integral at the lower limit, so in order
for the change in entropy to be finite at T = 0, one concludes
that

lim C, = 0,

T—0
as can clearly be seen for blackbody radiation from Eq. (11).
On the other hand, one cannot repeat the argument with
pressure substituted for volume, because P and T are de-
pendent variables. Thus no conclusion for C, similar to C,
can be made at absolute zero.

There is a subtlety so far overlooked in applying the third
law to this exotic system. Equation (10) shows that the
number of particles is a function of ¥ and T alone, in fact,
proportional to ¥'T3. As temperature approaches zero, N
also approaches zero. Since thermodynamics is an average
over the microscopic states, it becomes questionable to apply
statistics to such small numbers at low temperature. In
particular, at T =0, N = 0, it may appear that there is no
system to which any statistics or thermodynamics may be
applied, whereas this is really just a particular state of a still
well-defined system. In this respect, the interested reader
may want to consult two related papers pertaining to
blackbody radiation in small cavities at low tempera-
ture.!3.14

The question of a zero-point entropy Sy has been ad-
dressed by Sychev!3 and by Epstein.!® Since S = S(V,T),
one may write

S(V.T)
f ds = S(V.T) - 5(0.0)
5(0.0)

N
f (bTu =0 0 (bV)TdV’

where S(0,0) is the entropy evaluated at both zero tem-
perature and volume. Consider a process at constant tem-
perature, then d7 = Q. In particular, evaluate the expression
as volume goes to zero, which results in $(0,7) = 5(0,0).
Unless $(0,0) is zero, then the result is a nonzero entropy
for a system void of particles, hence the zero-point entropy
may be taken as zero, as in the strong form of the third
law.

If one adopts the modified Planck view of the system as
an assembly of harmonic oscillators with energies given by
€ = [n + 1/2]hw, then the energy density per unit frequency
interval contains a temperature-independent term that
becomes infinite upon ‘integration.!”!® Thus one is con-
fronted with an infinite zero-point energy. The usual
argument is that the infinite term may be omitted because
radiated energy corresponds to energy differences, and the
infinities “subtract out.” Clearly this is a very unsatisfactory
situation from a theoretical viewpoint.!® Actually, the
zero-point energy is infinite only for an idealized cavity
whose walls reflect radiation of all frequencies; such a cavity
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would have an infinite inertial mass. An upper limit would
exist for the frequency of radiation contained in a real cavity
and result in a finite contribution to the inertial mass.20-22

ISOTHERMAL EXPANSION

Suppose the system is expanded (or compressed) iso-
thermally and reversibly. The amount of heat absorbed
from an external source (in order to keep the temperature
constant) may be quickly found from

0= frds = TAS = (4/3)bT*AV,  (12)

where Eq. (4) has been used for S. Note that this result is
also immediate from the enthalpy [Eq. (7)] AH
= 4bT*AV /3, since constant temperature also corresponds
to constant pressure, in which case Q = AH. The change
in internal energy is AU = bT*AV, as seen from Eq. (6).

By the first law of thermodynamics, the difference be-
tween Q and AU should be the amount of work involved in
reversibly changing the volume, namely, 574AV /3. This
_may be verified by computing the work directly,

W= deV=PAV= (1/3)bT4AV. (13)
Note that just as Q may be found from AH for a process at
constant pressure (hence, temperature in this case), W may
be computed from AF at constant temperature (hence,
pressure).

ADIABATIC EXPANSION

An adiabatic expansion is especially interesting be-
cause of its statistical and quantum-mechanical implica-
tions. Assuming the process is performed reversibly, then
from dQ = TdS, entropy is conserved. Since S = 4bVT3/3,
this implies that the product ¥'73 is constant. Or by solving
this for T, one gets,

3s\is
=122 —1/3.
i (41;) e

and by combining this expression with P = bT4/3, a fa-
miliar equation is derived (PV*/3 = const.), which is of the
form PV” = const., as is well known for an ideal gas for an
adiabatic process. Yet, note that “y” for the blackbody
radiation is not C,/Cy.

It’s then a simple matter to use PV*/3 = const. in order
to calculate the work done by the system in expanding from
P, V:to Pf, Vf:

W= J‘PdV= s 3(PV; — PfVy). (14)

Recall from elementary thermodynamics that the work
done in an adiabatic process is W= (P;V; — PeVy)/(y — 1),
which checks the above result since v here is 4/3. Note also
that from Table I, U = 3PV, so that the work done by the
system is simply U; — Uy; that is, the energy necessary to
produce the expansion is extracted from the internal energy
of the radiation. Likewise, since NV is also proportional to
VT3, the number of photons is conserved for an adiabatic
change.

Up to this point in the whole paper, no use of the spectral
distribution of energy in frequency has been made, but the
present topic is ideal for the illustration of an adiabatic in-
variant. Suppose the volume is expanded uniformly in all
directions, then the mode wavelengths increase directly as
the linear dimensions in such a way that the wavelength A
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is proportional to the cube root of the volume.23 Thus, A is
proportional to ¥'/3 and VT3 = const., resulting in AT
= const., which will be recognized as the Wien displacement
law. Furthermore, since A goes as ¥1/3 and A = ¢/, one
arrives at the fact that »3V is an adiabatic invariant.

The occupation numbers are also adiabatic invariants?4;
that is, the work done by the blackbody system in an adia-
batic expansion causes a lowering of the energy levels
without any transfer of particles between the levels. In other
words, the particles ride up or down with the energy levels

for an adiabatic compression or expansion, respectively.

FREE EXPANSION AND THROTTLING
PROCESS

To achieve a free-expansion experiment with the pho-
ton gas, assume the cavity is thermally insulated with rigid,
perfectly reflecting walls and divided by an opaque, insu-
lated partition. One side of the partition is assumed to be
at T =0, hence, P = 0. A free expansion results when the
partition is removed. Because of the nature of the walls as
described, there is no heat transferred outside the cavity,
and no work is done; hence, the internal energy remains
constant. Since U = bV'T*, it is easy to see that the tem-
perature decreases in a free expansion, because volume
increases while U remains the same. This is in contrast to
the ordinary ideal gas where T doesn’t change. The reason
for the different behavior may be traced to the fact that the
blackbody internal energy is volume dependent, whereas
the internal energy of an ideal gas is independent of volume,
proyided that the number of molecules is held fixed, as is
usually assumed. The blackbody pressure decreases as may
be seen from P = bT*/3, and the entropy increases, as noted
from .S = 4U/(37).

Suppose a system, described by the relations in Table I,
undergoes a throttling process from high to low pressure.
As is well known,?’ the enthalpy remains unchanged. Since
H = 4U/3, this means that the internal energy is constant.
Also because P = hT*/3, and the fact that pressure drops,
this implies that the final temperature is less than the
original. This can be seen by directly computing the
Joule-Thomson coefficient u from P = bT4/3:

(o7 - L
”’(a:)fz @

Thus u is positive for all 7, meaning that the photon gas
always cools in a throttling process.

PHASE EQUILIBRIUM

Can we carry the thermodynamics of blackbody radia-
tion so far as to consider different phases? The answer is yes,
provided that the interpretation is that of a single system
in a two-phase equilibrium state.?6 This possibility is
strongly hinted via the fact that the equation of state, P
= bT*/3, is independent of volume, so that P = P(T) only,
which is characteristic of first-order phase equilibria. As
a matter of fact, the system may be considered to be a gas
that is in equilibrium with the cavity walls, a solid. The
latter serves as a particle reservoir for photons such that a
continual exchange of particles between the gas and solid
is maintained with all thermodynamic parameters re-
maining constant.

Suppose now the system volume is expanded isothermally
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by an amount AV. Photons are then removed from the
walls, since the number of particles depends upon V73, Eq.
(1). The analogy here is sublimation. The amount of heat
required to maintain the temperature constant has already
been calculated in Eq. (12), @ = 4bT*AV/3, which is
analogous to the heat of sublimation. The entropy clearly
changes.

If the radiation is truly like a single system in two phases,
then the Clapeyron equation?’ dP/dT = Q/(TAV) should
apply. Thus

dp

Q=TAV

but P = bT*/3, so
0 = TAV(4/3)bT? = (4/3)bT*AV,

as before.

An application of the phase rule?® illustrates the sim-
plicity of the system and verifies the interpretation as a
situation involving phase equilibrium. Let f be the number
of intensive parameters capable of independent variation,
r be the number of components in the system, and M be the
number of phases, then the phaseruleis f=r — M + 2. As
applied to blackbody radiation, r = 1 and M = 2 [gas plus
condensed media (walls)], therefore f = 1, saying that only
one intensive variable may be independently varied. This
checks, since i = 0 and P = P(T) only. On the other hand,
one may reverse the argument to verify that there are ac-
tually two phases in the system; that is, knowing that f'and
r are both unity, this tells us that M = 2. The fact that the
system is stable is reasonably apparent from physical con-
siderations, but recall that to be so, both (37/2S)y and
—(dP/dV)r must be positive.?’ Both are satisfied for
blackbody radiation.

CARNOT CYCLE

Consider the typical Carnot cycle consisting of an iso-
thermal expansion from A4 to B (points on, say a P~V or
T-S diagram), an adiabatic expansion from B to C, an
isothermal compression from C to D, and finally, an adia-
batic compression from D back to 4. Let the working sub-
stance be a photon gas, or in general, a gas whose equation
of state is P = bT*/3. The amount of heat transferred and
the work done may be easily calculated for each of the four
steps; in fact, this has already been done in Egs. (12}, (13),
and (14). Let pressure, volume, and temperature at points
A, B, C, D be denoted by PV, Ty Py, Vo, Ty P, Vi, T,
Ps, Va4, T,, respectively. Note that P, = Py and P4 = P3:

A= B:Qp = (4/3)bT3(Va=Vy), W=P(V2- V1)
B—’C§Q=0, W=3(P3V3"P2V2);
C—D: Q. = (4/3)THVs— V3),
W= (1/3)bTH(Va~ V3);

D_’A:Q=0, W=3(P1V1‘—P4V4);

The efficiency ¢ of the engine is found from its defini-
tion,

€ =net W= lQhI — |Q£l =1- |Qc|
On | Qx| |Onl
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_@/BTHV = Vo) _ [ - Tc(S3—S4)
(4/3)6TH(V2— V1) Th(S>—Sy)

But, S3 = .8, and 4 = S, so that (S5 — S4)/(S2 - S
= 1, giving

=1

e=1 _Tc/Th,

which is the familiar result for Carnot efficiency. This ex-
ample may be considered as a special case of the general
result that the same expression will always occur for a re-
versible process when all heat is taken in at a constant
temperature and all heat rejected at a constant lower tem-
perature.3? The above calculation makes a good homework
or test problem in an undergraduate course as a contrast to
using the ideal gas as a working substance.

COMMENTS AND DISCUSSION

One of the more common mistakes made in thermody-
namics is the failure to define the system (and its bounda-
ries) to which the theory is to be applied. In the present case,
one might say loosely that thermodynamics has been ap-
plied to “nothing™ (or vacuum), whereas in fact, the system
has been chosen as the electromagnetic field within a cavity
of volume V and temperature T. Or, perhaps more des-
criptively, the system consists of N photons within the
cavity, with N not conserved. The thermodynamics has been
shown to be simple, mainly because volume is absent in the
equation of state; that is, pressure and temperature are
uniquely related in a simple way.

There are two somewhat different historical approaches
to blackbody radiation. The first, due to Planck in 1900,
considered the system as an assembly of harmonic oscilla-
tors with quantized energies of (n + 1/2)hw (although
Planck did not include the zero-point energy). The second
viewpoint originated with Bose in 1924 and then Einstein
in 1925, which considered the photon distribution over the
energy levels. The two interpretations are actually the same;
for example, in Planck’s method, an oscillator of energy (n
+ 1/2)hw in the eigenstate n is equivalent to n photons in
the energy level Aw.3!

A microscopic observer would find experiments to be
rather dull at any point immersed in the blackbody radiation
field. Since the field is isotropic and homogeneous, the lu-
minosity would be independent of direction and he would
be unaware of the cavity size in any direction. Furthermore,
no polarization effects would be detected. If the temperature
were varied, then he would measure changes in intensity and
energy distribution (corresponding to a color change).

From a pedagogical point of view, I've found that the
most satisfactory method of solution and presentation to
a class is by simply stating the Helmholtz equation (3)
without any derivation, although students seem to appre-
ciate a word description of the partition function. Keep in
mind that complete thermodynamic information is con-
tained in F = —bVT*/3; the whole theory unfolds from it.
The form of the Helmholtz function, together with that of
the parameter b, is completely determined, apart from a
numerical factor, by dimensional requirements, given that
the photon is massless. This argument alone requires the
presence of both 4 and ¢, showing that both quantum theory
and relativity are necessarily involved in a complete un-
derstanding of the system.

One finds that the thermodynamics of this peculiar sys-
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tem is similar to those usually considered but with some
exceptions. For example, the system obeys both the strong
and weak forms of the third law, but in contrast to-some
conclusions normally associated with the third law, neither
the limiting values of the expansivity or the heat capacity
at constant pressure have meaning as temperature ap-
proaches zero. Both results can be traced back to the fact
that the equation of state contains only pressure and tem-
perature. In this respect, another unique feature is that, as
T decreases, the number of particles also decreases.

The present problem can serve as a simple example of
adiabatic invariants. As has been seen, V73 and PV (y
= 4/ 3) are both constant for an adiabatic change Since the
number of photons is proportional to ¥'T3, N is also a con-
stant. By a geometrical argument, we were able to derive
the Wien law, AT = const., and also show that ¥'/A3is an
adiabatic invariant.

The analogy with an ideal gas is especially evident when
thesystem is considered to be composed of photons, but the
analogy continues, since the equation of state may be
written as PV =~ 0.9NkT. Yet there are some subtle dif-
ferences in, for example, a free expansion and a throttling
process. Recall that an ideal gas experiences no temperature
change after a free expansion, but, in contrast, the tem-
perature of the radiation always falls.
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